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Preface

This User Manual has been developed as a learning tool for PRESENCE. It is intended to
be complimentary to the information already contained within the PRESENCE help files and
to the primary literature. It should not be regarded as a replacement for any of these other
sources.

It is a dynamic document that is sure to evolve over time. Currently (November 2012) it
only covers the basic single- and multi-season models, although the intent is that more will be
added as time and resources allow. Feedback on the User Manual would be much appreciated,
particularly on errors or mistakes in the document. Requests for added features or sections
will be considered, but may not be actioned if they will take a substantial time to develop.
Anyone that is interested in contributing to the manual should contact me.
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Foreword

Part of the impetus and support for this Presence User Manual came from the Clark County,
Desert Conservation Program (the state of Nevada, US), which implements the counties’ Mul-
tiple Species Habitat Conservation Plan. One of the more significant species covered by the
plan is the Mojave desert tortoise (Gopherus agassizii), an US Federally-listed Threatened
species. While inhabiting what most people think is a pretty inhospitable and desolate desert
environment in California, Nevada, Arizona and Utah, the species’ populations have been de-
clining. The reasons for the decline range from habitat loss and degradation from urbanization
(Las Vegas, Nevada, St. George, Utah), energy development (solar facilities), grazing, inva-
sive species, and fire to mortality by vehicles, disease, and predation. A primary need for any
conservation effort for a declining species is to assess the status and trends of the species.

The US Fish and Wildlife Service has developed a robust sampling method using line-
distance sampling to estimate abundance and density throughout the species’ range. However,
the lack of precision in this methodology over short timeframes and the inability to use exist-
ing data to make management and conservation decisions have led to suggestions for different
monitoring techniques. In addition, the line-distance sampling does not lend itself to collect-
ing environmental covariates that would allow a better understanding of finer-scale habitat
preferences for the species. It is in this context that the Desert Conservation Program has ini-
tiated a project to use occupancy sampling to assess the proportion of habitat within an area
that contains evidence of the Mojave desert tortoise and to collect environmental covariates.
In the process of developing the occupancy sampling monitoring protocol, Darryl assisted in
the sampling design and analysis sections. Needing a greater understanding of how to analyze
the data, we contracted with Darryl to develop this manual.

We thank Darryl for all the support that he has given our project to test occupancy sampling
for the Mojave desert tortoise. We look forward to implementing the project (Spring 2013)
and using the single season models after the first year’s data are collected, and the multiple
season models over the 3 to 5 year timeframe of testing the methodology. We know that this
manual will be useful to many researchers and conservationists.

Robert D. Sutter
Conservation Ecologist
Enduring Conservation Outcomes
Science Advisor for the Clark County, Nevada, US, Desert Conservation Program
November 2012
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Glossary

.out file extension for PRESENCE output file with results of a single model that has been fit
to the data.

.pa3 file extension for project results file that stores a summary of the models that have been
fit to the data.

.pao file extension for PRESENCE input data file.

AIC Akaike’s Information Criterion.

ASCII American Standard Code for Information Interchange, i.e., a standard character-encoding
scheme for storage of text characters to computer files.

detection history a sequence of 1’s and 0’s indicating whether the species was detected or
not (respectively) in each of the surveys of a sampling unit.

epsilon probability of species going locally extinct from a sample unit between two seasons.

eps abbreviation for ’epsilon’.

ε see ’epsilon’.

gamma probability of species colonizing a sample unit between two seasons.

gam abbreviation for ’gamma’.

γ see ’gamma’.

GUI Graphical User Interface, i.e., a point and click window on the computer.

h see ’detection history’.

lambda growth rate or rate of change in occupancy.

lam abbreviation for ’lambda’.

λ see ’lambda’.
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Glossary iv

MLE Maximum Likelihood Estimate.

OR odds ratio.

p probability of detecting the species in a survey given the species is present at the sampling
unit.

psi probability the species is present at a sampling unit.

ψ see ’psi’.

R a free statistical computing package, that does much more than statistics http://www.r-
project.org.

sampling unit basic landscape unit at which the presence or absence of the species is be-
ing determined. Could be naturally occurring or arbitrarily defined (e.g., pond, habitat
patch, grid cell, etc.).

season the applicable timeperiod for which statements about the presence or absence of a
species is biologically meaningful. It may not necessarily corresponding to a biological
season (e.g., breeding season) or climatic season.

survey a single opportunity for the detection of the target species. Multiple opportunities for
detection (i.e., multiple surveys) may exist in a single ’visit’ to a sampling unit in some
situations.

http://www.r-project.org
http://www.r-project.org


Chapter 1

Introduction

PRESENCE is Windows-based software that has been primarily developed to fit occupancy
models to detection/nondetection data. The basic sampling situation envisioned for most of
these models is that within a region, appropriately defined sampling units are surveyed for
a target species to establish its presence/absence within one, or multiple, sampling seasons.
However, due to imperfect detection, the species will not always be detected when present
leading to false absences which, unaccounted for, could lead to misleading conclusions about
the occurrence or distribution of the species. To address the detection issue, within each
season repeat surveys of the sampling unit are conducted. The surveys may be temporally or
spatially replicated, and may occur within a single or multiple visit to each sampling unit. The
detection/nondetection of the species in each of the multiple surveys is recorded providing the
necessary information to reliably separate out false and true absences. For more details on the
basic sampling requirements see MacKenzie et al. (2006).

It has been purposely designed to resemble Program MARK to lessen the learning curve
for users familiar with this popular mark-recapture software. A user can fit multiple models to
their data and PRESENCE stores the results for each model and presents a summary of how
well the models rank according to a model selection metric (Akaike’s Information Criterion,
AIC, is used as the default). Models are fit using maximum likelihood techniques MacKenzie
et al. (2006), hence parameter estimates are known as maximum likelihood estimates.

PRESENCE consists of 2 main windows; 1) a typical Windows graphical user interface
(GUI); and 2) a black-box command window (reminiscent of a DOS-window) that performs
the number crunching. Typically most users, especially beginners, will conduct analyses using
the GUI to set up data files, specify and fit models and examine the results. More advanced
users, however, may choose to use PRESENCE via the command line and call it directly, or
from software packages such as R to enable further manipulation of results. This User Manual
focuses on using PRESENCE via the GUI.

The results of an analysis are stored as a project. Each project consists of series of files, all
stored within a project folder; a project file (*.pa3); a data file (*.pao); and an output file for
each model fit to the data (*.out). The project file stores information relevant to the analysis
such as the data file name, number of models fit to the data and a summary table of results. It is
just an ASCII text file so can be opened with a text editor for inspection. The data file is a tab-
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CHAPTER 1. INTRODUCTION 2

Table 1.1: Single-season models available in PRESENCE as of June 2012

Model type Description Key References
Standard Fit standard models with

and without covariates.
Also allow for dependent
surveys

MacKenzie et al. (2002);
Hines et al. (2010)

Multi-method Repeat surveys and mul-
tiple detection methods
used on each survey

Nichols et al. (2008)

False positive detections Accounts for poten-
tial misidentification of
species

Miller et al. (2011)

Multi-state Extension to allow for 2 or
more occupied states

Nichols et al. (2007)

Two-species Examine patterns of co-
occurrence for 2 species
while accounting for im-
perfect detection

MacKenzie et al. (2004)

Heterogeneity
(Royle/Nichols)

Account for ’abundance’
induced heterogeneity in
detection

Royle and Nichols (2003)

Staggered entry Relaxes the closure as-
sumption of the standard
single season model allow

Kendall et al. (in press)

Repeated Count Data
(Royle Biometrics)

Repeated counts of unique
individuals rather than de-
tection/nondetection

Royle (2004)

delimited text file with a specified format (described in the PRESENCE help files). These can
be easily created external to PRESENCE, and then imported when a new project is begun, or
inputted directly into PRESENCE using a spreadsheet-like interface. Each output file contains
the results for a specific model that has been fit to the data, including which covariates had
been used and the resulting parameter estimates.

PRESENCE has the capability of fitting a wide range of occupancy models; Tables 1.1
and 1.2 contain lists of the available models as of June 2012. Different model types enable
different aspects of the biology of the system to be investigated, with models becoming more
complex further down the list in each table. However, there is a great deal of similarity in the
mechanics of how models are specified in terms of which covariates are include in a particular
model that is fit to the data.

The basic steps required for an analysis within PRESENCE are:

1. Identify the general class of analysis to use to address the questions of interest (e.g.,
single- vs multi-season analysis, standard or accounting for false positive detections,
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Table 1.2: Multi-season models available in PRESENCE as of June 2012

Model type Description Key References
Standard Standard multi-season

model enabling esti-
mation of occupancy,
colonization, extinction
and persistence

MacKenzie et al. (2003)

False positive detections Account for potential
misidentification of
species

Unpublished

Heterogeneous detections Allow heterogeneity in de-
tection with finite mixtures

Unpublished

Multi-state Extensions to allow for 2
or more occupied states,
and changes between them

MacKenzie et al. (2009)

Integrated habitat-
occupancy

Simultaneous modeling of
changes in occurrence and
discrete habitat types

MacKenzie et al. (2011)

Two-species Examine what effect one
species may have on the
dynamic processes of an-
other (i.e., competition)

Bailey et al. (2009)
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etc.).

2. Develop a list of models that will be fit to the data (known as a candidate set). Each
model may have different combinations of covariates on each parameter type (e.g., occu-
pancy and detection) and should represent different questions of interest for the species.

3. Prepare the detection data and any necessary covariates in software outside of PRES-
ENCE (e.g., in a spreadsheet or database software).

4. In PRESENCE, start a new project and enter the data.

5. Define a model to be fit to the data, identifying which covariates are to be included.

6. Interpret the output.

7. Fit all models in the candidate set.

8. Draw overall conclusions.

This User Manual will not cover all of the different types of models available within PRES-
ENCE, and will concentrate on the standard single-season and multi-season models. It is also
beyond the scope of the manual to provide a lot of detail on topics like comparing models, the-
ory on model selection and model selection strategies; some brief explanation may be given
but the expectation is that users will use the references provided for additional reading. The
main focus of the User Manual is to lead users through the mechanics of using PRESENCE,
setting up models and interpreting the PRESENCE output. It is presumed that you have al-
ready identified what type of model (i.e., general class of analysis) you should be using and
the specific models in your candidate set.



Chapter 2

First Steps

2.1 Before going to the field
There are many points associated with the analysis that need to be considered while designing
the data collection protocols. Issues such as defining a sampling unit and what constitutes a re-
peat survey are very relevant to the correct interpretation of the results, but these fundamental
issues are beyond the scope of this User Manual and have been addressed elsewhere (MacKen-
zie and Royle, 2005; MacKenzie et al., 2006). More relevant to the analysis is consideration
of the potential covariates or predictor variables that might be included in the models; that
information will need to be collected while in the field if it is not readily available by some
alternative means (e.g., from remote sensing). What also needs to be considered is how the
results are ultimately going to be used.

If the models are going to be used to make predictions, or create maps, of species occur-
rence at places that will not be surveyed, then the types of covariates that could be used for that
predictive modeling will be limited to those that can be collected without visiting the other lo-
cations. Hence collecting detailed information on covariates that can not be used for that
predictive modeling could be wasted effort better utilized elsewhere. However, if the intent is
to gain a better understanding of what covariates might be important factors for species occur-
rence (regardless of whether predictions to other places will be made or not), then information
on those covariates should obviously be collected.

Another relevant point with respect to covariates, and how they are used in PRESENCE, is
that you can only have missing covariate values if the corresponding observation is also miss-
ing, otherwise that data will need to be sub-setted or that covariate can not be used. Therefore,
all practical steps should be taken to avoid missing covariate values. Further discussion on
covariates is given in Section 2.3.2.

In short, prior to collecting the data, careful thought should be given to the expected
method of analysis with due consideration of it’s data requirements and limitations.
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CHAPTER 2. FIRST STEPS 6

2.2 Downloading and installing PRESENCE
PRESENCE is Windows-based free-ware developed by Jim Hines of the US Geological Sur-
vey and a zip file can be downloaded from http://www.mbr-pwrc.usgs.gov/software/

presence.html. The zip file contains a self-extracting executable file that once opened will
begin the typical Windows installation process. In order for the PRESENCE file type of be
successfully registered with the Windows operating system administrator privileges are re-
quired. However, PRESENCE can also be installed by users without administrator privileges
provided it is installed to a directory where the user has write privileges (e.g., My Documents).
The disadvantage is that the PRESENCE file types will not be registered with the Windows
registry, but PRESENCE should still run.

Linux and Mac users have successfully used PRESENCE via Windows emulators such as
Wine. Alternatively, if you have access to a Windows installation disk, a virtual machine could
be created (e.g., with VirtualBox) and the Windows operating system installed so PRESENCE
can run under a virtual Windows environment.

2.3 Preparing your data
There are two aspects of the data used by PRESENCE; 1) the detection/nondetection data;
and 2) covariates or predictor variables. This information is stored in a PRESENCE data file
(*.pao), which is just an ASCII text file with a specific format. You can create this file yourself
directly either through code or with a text editor, or PRESENCE has a built in spreadsheet-like
interface that enables you to copy and paste your data in from spreadsheet software and then
save the data in the required format. Basically, PRESENCE requires data in a row and column
format where each row of data represents a single sample unit, and each column represents a
survey occasion. Sample data sets are installed with PRESENCE as spreadsheet files.

2.3.1 Detection/nondetection data
The detection/nondetection data is, for most models, a sequence of 1’s and 0’s indicating
whether the species was detected or not in a particular survey of a particular sampling unit.
For example, the history:

0101

indicates the species was detected in the second and fourth survey of the unit, but not detected
in surveys one and three. We refer to this sequence as a detection history. A detection history
may also include missing values which can be represented as either a dash (-) or a dot (.),
e.g., 01-1. These missing values represent survey occasions when no survey of the unit was
actually conducted, which may be used to align surveys across all units into a meaningful
chronological order or to denote occasions when a survey was planned, but was not completed
for some reason. Missing values may also be used to ’pad out’ a detection history if an unequal
number of surveys was conducted at different units as PRESENCE expects all histories to be
the same length, e.g.,

http://www.mbr-pwrc.usgs.gov/software/presence.html
http://www.mbr-pwrc.usgs.gov/software/presence.html
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0101
10- -
000-
01- -

For most of the basic models, it is therefore required that the outcome of each survey can
be determined in terms of either a detection (1), nondetection (0) or a missing value (- or .).
For more complicated models, the detection history may include other values (e.g., 2, 3, 4, ...)
though the interpretation of the values depends on the model being used. If the data is being
setup in a spreadsheet, then the outcome of each survey should be placed in a separate cell.

For multi-season data it is important that the first survey of each unit each season are in
the same column of data. Missing values can be inserted to pad out the data if need be.

2.3.2 Covariates
Continuous and categorical covariates

There are two general types of covariates that could be included in PRESENCE, continu-
ous or categorical variables. Continuous variables could potentially take any value between
±∞, e.g., elevation, rainfall, latitude, temperature etc. While not strictly necessary, often it is
highly advisable to standardize continuous covariates prior to entering them into PRESENCE
to improve the performance of the software; this is particularly true for covariates that are a
relatively long way from zero, or include large positive or negative values. A general formula
for standardizing continuous covariates is

x∗i =
xi−a

b
(2.1)

where xi is an observed covariate value, and a and b are constants. If a was the average of
the covariate values and b the standard deviation, then Equation 2.1 would be known as the
z-transformation, which is a completely legitimate approach. However, in practice it may be
preferable to use alternative values for a and b to ensure interpretable results (discussed further
below). Typically it is a good idea to use values that result in zero on the standardized scale
being somewhere near the middle of the range of standardized covariate values (i.e., select a
to be close to the mean or median of the unstandardized values), and the standardized values
are between ±5 (or thereabouts). It is recommended that b should be chosen so that a one
unit change of the standardized covariate is on a convenient scale. For example, for an eleva-
tion covariate initially measured in meters, b might be chosen to be 100 so the standardized
elevation covariate is on the scale of per 100m.

Categorical variables can only take a limited number of discrete values, where the values
do not necessarily relate to any particular ordering. In PRESENCE these need to be repre-
sented as a series of indicator (or dummy) variables, which are binary, 0-1 variables used to
represent the different levels of a categorical covariate. For example, if you have three habitat
categories A, B, and C, you could have three indicator variables; one for each type (Table 2.1).



CHAPTER 2. FIRST STEPS 8

Table 2.1: An example of defining indicator variables

Habitat Type HabA HabB HabC
A 1 0 0
B 0 1 0
C 0 0 1

Many statistics packages will allow you enter the categorical covariate directly, and per-
form the conversion to a series of indicator variables automatically (technically these indica-
tors variables are defined by something called a contrast). PRESENCE does not currently
include that functionality therefore it must be done manually before entering the data into
PRESENCE. This can be easily accomplished within a spreadsheet using the if function. Ta-
ble 2.2 provides an example of a portion of a data set illustrate what the indicator variables
may look like in practice.

Table 2.2: An example of using indicator variables in practice

Unit Habitat Type HabA HabB HabC
1 A 1 0 0
2 C 0 0 1
3 B 0 1 0
4 B 0 1 0
5 C 0 0 1
6 A 1 0 0
7 A 1 0 0
8 B 0 1 0
9 C 0 0 1
10 C 0 0 1

If there is a natural order to the covariate categories, rather than creating a series of indi-
cator variables, an ordinal categorical covariate can be created by using appropriate numeric
values. For example, if Habitats A, B and C represent low, medium and high quality habitat,
the values A, B and C in Table 2.2 could be replaced with the values of 1, 2 and 3. One
consideration of creating an ordinal categorical covariate is that the relative difference in the
numeric values reflects that relatively difference in the ordering of the categories. So by using
the values of 1, 2 and 3 for low, medium and high quality habitats, it is presumed that the dif-
ference between low and medium quality habitats is similar to the difference between medium
and high quality habitats as the ordinal covariate value is different by 1 in each case.

Even though a distinction has been made here between continuous and indicator variables,
mathematically, both are treated in the same way when fitting models; they are both simply a
number and interpretation of effect sizes is very similar.
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Transformations of covariates

A separate issue from the standardization of continuous covariates, is the need to consider
the general form of the relationship between the response variable (e.g., occupancy or detec-
tion) and the continuous covariate or predictor variable. Just using the standardized covariate
presumes a linear relationship. That is, as the value of the covariate increases, occupancy or
detection continues to increase (or decrease) at a constant rate (Figure 2.1). If some other
functional relationship is expected (e.g., Figure 2.2), then a transformation of the covariate
values would have to be performed and the transformed covariate values be included in the
PRESENCE data file. An example of this is given in the third example in the chapter on
single-season models.

Figure 2.1: Example of linear relationship between a probability on the logit scale and a
covariate

Site-specific and sampling-occasion covariates

Regardless of whether a particular covariate is a continuous or indicator variable, a distinction
is made within PRESENCE between site-specific and sampling-occasion covariates. A site-
specific covariate is typically some characteristic of a sampling unit (also referred to as a site)
that may be different for different units, and whose value does not change during a season, but
may change between seasons. Habitat type, elevation and distance from nearest water source
may all be examples of site-specific covariates. The value of a sampling-occasion covariate
(sometimes called a survey-specific covariate) could be different for every survey of any unit,
e.g., air temperature, time of day, observer and cloud cover.



CHAPTER 2. FIRST STEPS 10

Figure 2.2: Example of linear, quadratic and logarithmic relationships between a probability
on the logit scale and a covariate

The distinction is important for two reasons. Firstly, site-specific covariates can be used
for both occupancy and detection probabilities whereas sampling-occasion covariates can only
be used for detection probabilities. As a unit is presumed to be either occupied or not for all
surveys within a season (MacKenzie et al., 2006), it does not make sense to attempt ana-
lyzes where the value observed during a particular survey affects the probability of an event
that has already occurred. It may however be reasonable to summarize a sampling-occasion
covariate and use the summary as a site-specific covariate. For example, average air temper-
ature may provide an overall indication as to whether the unit typically experiences warmer
or cooler temperatures, which may influence occupancy probabilities. Secondly, the differ-
ent types of covariates have a differing number of observations. Site-specific covariates have
one value for each sampling unit and get entered into PRESENCE as a single column, while
sampling-occasion covariates have one value for every survey hence will require multiple
columns and will have the same dimensions (i.e., number of rows and columns) as the detec-
tion/nondetection data.

Missing covariate values

Missing sampling-occasion covariate values (again, denoted with a ’-’ or ’.’) are allowed
provided that they correspond to a detection/nondetection survey occasion that is also missing
(e.g., a particular unit was not surveyed on day three as planned, hence the water temperature
at that unit on that day was not collected either). PRESENCE will provide a warning if a
covariate value is missing, but the corresponding detection survey data is non-missing, but
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will proceed with an analysis otherwise using a default covariate value of -999 hence results
may be incorrect. Site-specific covariates can not be missing. In order to relate an observed
outcome to a measured covariate, you need to have both the outcome and the covariate value.
This is a basic requirement of most statistical analyses. If there are missing covariate values
for non-missing data then it may be necessary to subset your data and conduct different sets of
analyses on the different subsets (with some common models being fit in both to enable some
comparison of results).

Automatic variable selection

PRESENCE is not designed to enable some form of automatic selection procedure to identify
what variables appear to be ’important’. While such an approach is conceptually possible,
there are no plans to attempt to implement such a procedure in PRESENCE. Our philosophy
is that users should be able to justify why a particular set of covariates has been included in
a model that has been fit to the data by using sound scientific judgment around the objective
of why the data was collected in the first place (MacKenzie et al., 2006). Furthermore, by
fitting a large number of models to the data (as in a automated procedure), there is a strong
potential for finding a spurious combination of covariates that happen to explain the observed
data very well, but have little biological meaning. Such a model would provide a very good
description of the data, but have limited usefulness for prediction to other data sets. As noted
earlier, topics such as variable selection and model comparison are detailed subjects that are
beyond the scope of this manual.

Data preparation check-list

• Detection data is formated with 1 row per unit and 1 column per survey and only con-
tains whole number values or the ’-’ or ’.’ characters

• Categorical covariates have been converted to a series of indicator variables, or to ordinal
categorical covariates

• Continuous covariates have been standardized to an appropriate scale, particularly if
zero is well outside the unstandardized range

• Site-specific covariates are each formatted into a separate column, with each row for a
different unit

• Sampling-occasion covariates are in the same format as the detection data, and any
missing values correspond to missing surveys

• The same row ordering is used for the detection data and all covariates
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2.4 Creating a PRESENCE data file
As noted previously, a PRESENCE data file is simply a tab-delimited ASCII text file with a
certain format. It can either be created directly by the user in a text editor or with computer
code, or from within PRESENCE by copying and pasting data from a spreadsheet. Rather
than detail how to do so here in abstract, the necessary steps for creating the data files are
given in the examples in the following chapters.



Chapter 3

Single-season model

A single-season model can be used to look at the level or patterns in occupancy at a sin-
gle point in time. It is essentially a snapshot of the presence and absence of a species for a
given time period. The single season model could be used to produce numerical summaries of
the situation (i.e., estimated proportion of units occupied or quantifying the effect of certain
covariates) or to produce maps indicating areas with higher and lower probabilities of occur-
rence (e.g., species distribution maps). In this chapter we shall briefly review the underlying
statistical methods of the modeling approach, then work through three examples of increasing
complexity. The examples used here focus on the standard single-season model of which there
are a number of extensions now available in PRESENCE, although these extensions are be-
yond the scope of this User Manual. However, the basic mechanics of how to setup up models
in PRESENCE to fit to data is very similar for all model-types; the main differences is in terms
of the range of parameters associated with each model-type.

3.1 Underlying model
The statistical model used by PRESENCE is that developed by MacKenzie et al. (2002), and
estimates obtained by using the principle of maximum likelihood. Similar analytic approaches
have been developed by others (Tyre et al., 2003; Wintle et al., 2004; Stauffer et al., 2004)
although the framework developed by MacKenzie et al. (2002) was the most general. Users
are directed to MacKenzie et al. (2002) or MacKenzie et al. (2006) for greater detail. It should
be noted that these models can also be used within a Bayesian approach to statistical inference
(rather than with maximum likelihood), but it is not currently currently possible to do so with
PRESENCE hence a Bayesian approach is not discussed here. Although it is stressed that the
actual underlying model is, conceptually, exactly the same regardless of whether maximum
likelihood or Bayesian methods are used; the difference is simply how that model is applied
in association with the observed data.

The single-season model has two fundamental processes, occupancy and detection. Sam-
ple units within the region of interest are either occupied by the target species or not (i.e.,
species is present or absent at each unit) and the probability of the species being present at
the ith unit is denoted as ψi (spelt ’psi’). Given the unit is occupied, the probability of detect-

13
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ing the species in the jth survey of that unit is pi j. If the unit is unoccupied then, using the
standard single-season models, the species cannot be detected. In order to reliably separate
out occupancy from detection (i.e., where the species is vs where the species is found) repeat
surveys within the season are required. During the season it is assumed that units are closed
to systematic changes in occupancy, the outcome of each survey of a unit is independent and
there is no misidentification of species (i.e., no false detections). Because the species is de-
tected imperfectly there is the potential for false absences in the data (i.e., units where the
species was never detected, but it was actually present) which will lead to occupancy being
underestimated if unaccounted for. The intent of this modeling is to explicitly correct for de-
tection issues leading to improved inferences about occupancy and the factors that may be
influencing it.

The repeated surveys of a unit will yield a detection history denoting the sequence of
detections and nondetections of the species at that unit. From the detection history, a verbal
description of the data can be developed and then translated into a probability statement, which
is an expression for determining the probability of observing that particular detection history
given the model. For example, consider the detection history (hi):

hi = 0101.

A verbal description would be:

the unit was occupied, was not detected in the first survey, detected in
the second, not detected in the third and detected in the fourth survey.

Translating to a probability statement is simply achieved by replacing the relevant phrases as-
sociated with certain events in the verbal description by the probability of the event occurring.
For example, the unit is occupied with probability ψi and the species is not detected in the jth
survey with probability 1− pi j. Therefore, the probability statement for this detection history
is:

Pr(hi = 0101) = ψi(1− pi,1)pi,2(1− pi,3)pi,4. (3.1)

Probability statements for units where the species was detected at least once are constructed
in a similar manner.

For units where the species was never detected, e.g., hi = 0000, the same approach is
used while recognizing that the species may go undetected at a unit for two reasons; due to
either a true or a false absence, and that both possibilities must be accounted for in the verbal
description and probability statement. The verbal description for the history 0000 is:

the unit was occupied and the species was not detected in all four
surveys (i.e., a false absence) OR the unit was unoccupied (i.e., a true

absence).

To account for the multiple options in the verbal description (that cannot be differentiated
between from the available data) within the probability statement, the probability of each
option is determined and then added together. That is:

Pr(hi = 0000) = ψi(1− pi,1)(1− pi,2)(1− pi,3)(1− pi,4)+(1−ψi). (3.2)
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Given the set of detection histories from the s units that were surveyed, the model likelihood
is defined as,

L =
s

∏
i=1

Pr(hi). (3.3)

Once derived, the likelihood equation is used by substituting in numeric values for the ψ and
p parameters and finding what combination of values maximizes the value of the likelihood
expression. The parameter values that maximize the likelihood are known as maximum likeli-
hood estimates (MLE’s).

As a PRESENCE user, it is good to have a basic understanding of what the software is
doing with the data you input to obtain the resulting output and MLE’s. However, from a
practical perspective, one does not have to get overly concerned about the fact that PRES-
ENCE is creating these probability statements which contain combinations of ψ’s and p’s.
The focus of the user should be how to use the software to focus on questions associated with
the separate components of occupancy and detection, although being mindful that the two are
inextricably linked.

Further modeling of the ψ’s and p’s (e.g., to investigate what factors are important co-
variates for occupancy and detection) is facilitated by using something called the logit-link
function, which is a non-linear transformation used to rescale probabilities from the 0-1 scale
to the ±∞ scale. With the logit-link, occupancy and detection probabilities can be expressed
as a function of site-specific and sampling-occasion covariates, e.g.,:

logit(ψi) = ln
(

ψi

1−ψi

)
= α0 +α1x1,i +α2x2,i, (3.4)

logit(pi j) = ln
(

pi, j

1− pi, j

)
= β0 +β1x1,i +β2x2,i +β3y1,i j +β4y2,i j, (3.5)

where ln is the natural logarithm, the x’s and y’s are site-specific and sampling-occasion co-
variates respectively, and the α and β parameters are the regression coefficients to be esti-
mated. These resulting equations are essentially logistic regression equations. The terms of
the form:

ln
(

θi

1−θi

)
(3.6)

are the actual transformations applied to the probabilities (denoted with θ here for generality),
and is just the log of the ratio of the probability of success to the probability of failure. This
ratio is also known as the odds hence the logit-link is also referred to as the log-odds link.
More detail on the use of the logit-link and its interpretation is given in the examples in this
chapter and in MacKenzie et al. (2006).

The key to successfully using PRESENCE is realizing that one is simply setting up a num-
ber of logistic regression equations for the different parameters of interest. The regression
coefficients for each parameter type are estimated simultaneously through the framework of
the probability statements which involve a combination of the ψ’s and p’s, hence are auto-
matically corrected for the effect of the other parameters. How the user specifies the logistic
equations to be applied is covered in further detail below.
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3.2 Example 1: Blue-ridge two-lined salamander
This first example uses one of the sample data sets that is installed along with PRESENCE.
It is data that was collected on the blue-ridge two-lined salamander (Eurycea wilderae) in
Great Smoky Mountain National Park, USA, where 39 transects were each surveyed 5 times
between April and mid-June. Further details are given on page 99 of MacKenzie et al. (2006).
In this example we shall go through the process of setting up a new project, inputing the data
from a spreadsheet and fitting two relatively simple models to the data. There are no covariates
in this example.

3.2.1 Creating a new project and entering the data
Once you have started PRESENCE, in the menu bar, select File>New Project. This will
bring up a dialog window entitled Enter Specifications for PRESENCE Analysis, and you
should select the large Input Data Form button in the bottom right corner (Figure 3.2. This,
in turn, will open a data input interface window that allows you to copy and paste your data
into PRESENCE from a spreadsheet package.

Figure 3.1: Starting a new project

Figure 3.2: Location of Input Data Form button

The Data Input Form has a spreadsheet-like format. The detection/nondetection data or
covariate values are entered into the respective grid cells, with the five text boxes near the
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top of the window being used to define the various dimensions of the spreadsheet; the num-
ber of rows (sampling units), number of columns (cols; repeated surveys), number of survey
occasions per season, number of site-specific covariates and number of sampling-occasion
covariates. For this example there are no covariates, so last 2 boxes can left as 0, and PRES-
ENCE will automatically adjust the number of rows and columns when we paste in the data.
For single-season models, PRESENCE will ignore the value specified for the number of occa-
sions per season, although it will default to the total number of surveys. This value is required
however for other models such as the multi-season models, but it shall be ignored for now.

The data for this example is in a file called Blue Ridge pg99.xls which in the sample data
folder that will be created within the PRESENCE installation folder (e.g.,
c:\program files\PRESENCE\sample data).

1. Open Blue Ridge pg99.xls using a spreadsheet package. The data should appear as a
series of 1’s and 0’s arranged in 39 rows (1 for each transect) and 5 columns (1 for each
survey).

2. Select the entire data range (i.e., from cell A1-E39) and copy to the clipboard, then
return to the Input Data Form (note you may need to locate the window in your task
bar).

3. Select Edit>Paste>Paste Values from the Edit menu to paste in values into the
grid cells.

4. The number of rows and number of columns should automatically update to 39 and 5
respectively.

5. If the data is pasted in the incorrect position for some reason, select Edit>Paste>Undo

Paste, ensure the top leftmost cell is selected and attempt to Paste Values once again.

6. Select File>Save As to save the data, specifiying an appropriate location and file
name. During the saving process you will be asked:

• whether you want to use the last column of the detection data as frequency data
(number of units at which that history was oberved). Select No.

• specify a title for the data file which is just to provide a simple description of the
project for your own reference.
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7. Once the data is saved, close the Data Input Form which will return the user to the
Enter Specifications window, with the data file and project name being automatically
updated.

At this point the data file has been saved, but the set up of the project has not been com-
pleted hence no attempt should be made to run a model yet. However, before proceeding some
explanation should be given. The middle text box should contain the full pathway and file-
name for the data file that has just been saved (I called it br salamanders.pao). The third text
box contains the full pathway and project filename, which PRESENCE specifies automatically
1 . The naming convention for the project file is to use the same base filename as the data file,
but to change the extension to .pa3. This is important as if you want to reanalyze the same
data set, but retain the results of a previous analysis, you first want to create a copy of the data
file otherwise PRESENCE will attempt to overwrite the previous project file (although you
will be prompted as to whether you want to overwrite the project first). The project title in the
first text box is simply for your own reference and can be anything. The raw .pao file can be
viewed by clicking on the Click to view file button. Once the data file has been selected (either
by entering and saving the data through the spreadsheet interface, or by browsing for a data
file that has already been created, Click to select file), summary information is presented on
the number of sites, number of surveys, and number of covariates. These can not be modified
here, although, the number of occasions per season can.

In order to create the project file and proceed with the analysis, you must hit OK. After
doing so, the Enter Specifications window should close and be replaced with the Results

1As of November 2012 the project pathway is not correct as all files related to a project are placed within a
new folder called datafilename project. For example, here the full pathway and filename for the project should
be f:\presence files\br salamanders project\br salamanders.pa3
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Browser window (Figure 3.3). If the Results Browser window does not appear, you have not
created the project file and must repeat the above steps. An important point is that when the
project is created a copy of the data file is placed within the project folder, hence there are two
copies of your data file; one inside and one outside of the project folder. The data file actually
used by PRESENCE for an analysis is the copy inside of the project folder, therefore if the
data file needs modified (e.g., add in additional covariates) make sure the data file inside of
the project folder is replaced.

Figure 3.3: Blank Results Browser window which should appear on screen once the project
has been successfully set up.

Congratulations! Your data has been inputted, project file created and now you are ready
to begin your analysis.

3.2.2 A first analysis
Here we are going to fit two single-season models to the blue-ridge salamander data that we
have just set up the project for above. If you happened to have closed PRESENCE after
creating the project file you can reopen the project by selecting File>Open Project from
the main PRESENCE window. Note that recent projects are also listed down the bottom of
the File menu.

To begin a single-season analysis of this data, in the main PRESENCE window select
Run>Analysis:single-season. This will bring up the Setup Numerical Estimation Run
(SNER) window. This same window is used for all analyses, only the Model box varies
between the different types of analyses. The other parts of the window include the analysis
title (which should be carried over from the title given when the project was created), model
name, the ability to fix real parameter values, and various options that shall be ignored for
now.

Within the model box, there are 3 options; Pre-defined, Custom or Custom with spatial
correlation. By default the pre-defined option is selected which provides a list of six pre-
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defined models that users can select to learn how to use PRESENCE, but generally will be
of limited use for a full-blown data analysis (see the PRESENCE Help documentation for a
definition of these models). In this example, we are going to fit the first two pre-defined models
to the data, then fit the same two models using the Custom model and compare the outputs.
The Custom with spatial correlation model is an extension of the model described above
(Section 3.1) and was developed for a specific situation where the repeat survey information
was collected with spatial replicates (segments of a transect) rather than temporal replication
(e.g., surveying the same transect more than once, Hines et al. (2010)). The spatial correlation
aspects relates to potential lack of independence in the detection of the species in the segments
and not spatial correlation in terms of occupancy probabilities. Similar correlation issues can
arise with temporal repeat survey hence this particular model type could be useful for a wide
range of practical applications, however, the details of this model are not discussed further in
this User Manual.

The first pre-defined model 1 group, Constant P assumes that all transects have the same
occupancy and detection probability, and that detection probability is also constant for all
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survey occasions. Only two parameters will be estimated for this model; one for occupancy
and one for detection. The second model 1 group, Survey-specific p again assumes that all
transects have the same probability of occupancy and detection, but now detection will be
estimated separately for each of the five surveys, allowing them to be all different (which
might be due to changes in weather conditions for example). Under this second model, six
parameters will be estimated; one for occupancy and five for detection.

To run the first pre-defined model;

1. Ensure the 1 group, Constant P model is highlighted.

2. Hit the OK to Run button.

3. After a brief pause, a message box will appear with some summary information about
the results, asking you to confirm that you want these results added to the project file.
Click Yes. Once confirmed, the results for that model will be saved and added to
the project for later retrieval, and a summary of the model will appear in the Results
Browser

4. Left-click on the model name to select it, then right-click to open a pop-up menu (as
indicated above), and then select View model output. Alternatively, once the model
has been selected you can click on the text icon to view the output. Figures 3.4 and 3.5
display the output that should appear in your default text editor (e.g., Notepad).

The output begins with some summary information about the data file and internal coding
used by PRESENCE to define which model is being fit to the data. Following that there is
some more summary information about the data file; number of sites (transects in this case),
sampling occasions and covariates. The Data checksum is a single-value representation of
the detection data which PRESENCE checks with each model run to ensure the detection data
has not been changed as the user has access to the data file. The Naive occupancy estimate is
the estimate of occupancy ignoring detection, i.e., the fraction of units where the species was
detected at least once. Next in the output is the design matrices that were used to fit the model
to the data. An explanation of them is deferred at this point to the next section.

Further down the output are the number of parameters used to fit the model, twice the
negative log-likelihood value evaluated at the maximum likelihood estimates (which is used
to calculate AIC values or could be used in likelihood ratio tests), and the AIC value for the
model (discussed below). The log-likelihood is the value obtained by substituting in the values
for ψ and p that are estimated from the data into the probability statements that were discussed
earlier, then taking the natural logarithm of the evaluated probability statements. Next in the
output are the estimated beta paramaters, which are associated with the design matrices to
which we shall return in the next section.

At this point, it is the estimated real parameters that are of most interest. The real pa-
rameters are the probabilities that are being estimated, occupancy and detection. Even though
the output states Individual site estimates of ..., only estimates for site 1 are given. That is
because there are no covariates in this example and the predefined model that was selected
does not use covariates even if there were any available. For the real parameters, the estimate,
its standard error and a 95% confidence interval are given in the output.
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Figure 3.4: Beginning of the output for the 1 group, Constant P model

The last part of the output is a derived parameter (parameters that are estimated using
secondary calculations of real parameters) called conditional psi (ψc), which is the probability
of the species being present at a sampling unit, given the observed detection history for that
unit (MacKenzie et al., 2006). This probability will be 1.0 for any unit at which the species
was detected at least once (if the species has been seen at least once at a unit, then its presence
at that unit has been confirmed) and will be some value between 0 and p̂si for any unit where
the species was never detected.

From Figure 3.5, ψ̂ (i.e., ’psi’( = 0.60 indicating that, on average, blue-ridge salamanders
will be present on 6 out of every 10 randomly selected 50m transects, although from the
95% confidence interval, the value might be between 3.5-8 transects. The estimated detection
probabilities suggest during each survey on an occupied transect, the probability of detecting
blue-ridge salamanders in a single survey is about 0.26. The conditional psi estimates are
either 1.0 or 0.25, hence for those transects where blue-ridge salamanders were never detected
after 5 surveys, the probability of salamanders being present is estimated to be 0.25. Had
more surveys been conducted, and salamanders still had not been detected, then conditional
psi would get closer to 0.

The next step is to fit the second predefined model 1 group, Survey-specific p using the
same procedure as before, but selecting the second model in the pre-defined list and hitting
OK to Run. After confirming this second model, your Results Browser should look like
Figure 3.6.
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Figure 3.5: End of the output for the 1 group, Constant P model

Figure 3.6: Results Browser after fitting first two pre-defined models

The Results Browser should now contain a summary for two models and the default is
for PRESENCE to automatically rank them in terms of Akaike’s Information Criterion (AIC).
An in-depth discussion about AIC is not provided here (see Burnham and Anderson (2002);
MacKenzie et al. (2006); or Google it), other than to say it is a method for comparing models
based upon their relative distance from some unknown ’truth’. It’s not possible do determine
exactly how far each model is from this ’truth’, but it is possible to determine which model is
closest, second closed, etc. AIC is an approximation of this relative distance and for the mth

model fit to the data is calculated as:

AICm =−2l(θm)+2parm

where −2l(θm) is twice the negative log-likelihood for the model evaluated at the maximum
likelihood estimates (MLEs) for θm, θm is the set of parameters in the model that are estimated
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and parm is the number of parameters in model m.
There are seven columns in the Results Browser, each presenting a piece of summary

information about the model, and how it ranks compared to others in the set.

1. Model is the name that was specified for each model

2. AIC is the AIC value for each model

3. deltaAIC is the relative difference in AIC values between each model and the currently
top-ranked model (the one with smallest AIC)

4. AIC wgt is the AIC weight which is a measure of support for each model being the
‘best’ model (Burnham and Anderson, 2002)

5. Model Likelihood is the ratio of each models AIC weight over the model weight for
the top-ranked model2

6. no. Par is the number of parameters in the model (parm)

7. -2*LogLike is twice the negative log-likelihood evaluated at the MLEs (−2l(θm))

Examining the results, a difference of only 1.95 AIC units between these two models
indicates that even though it is not ‘the best’, the second model still has a reasonable level
of support and there is further evidence of this with the second model having a substantial
amount of AIC weight. Thus, while most of the evidence points towards the probability of
detection being constant (based upon the available data), the evidence is not overwhelming
and there is some indication that detection probability may vary between surveys.

Alternatively, one could use these results to perform a likelihood ratio test of the null
hypothesis that detection probability is equal on all five days, with the alternative hypothesis
being that detection probability varies between surveys. The test statistic for this is 161.76−
155.71 = 6.05, which we could compare to the chi-square distribution with 6−2 = 4 degrees
of freedom (values can be read from the two rightmost columns in Figure 3.6). Doing so (with
another piece of software) provides a p-value of 0.195 so there is insufficient evidence to reject
the null hypothesis of constant detection.

Opening the output for the second model, note that it has the same layout as for the first
model (Figures 3.4 and 3.5). The only major difference is towards the middle of the output
where the real parameters are listed, rather than the same estimated value for detection prob-
ability being reported five times, there are now five different estimates. Note there is a large
degree of variation in the estimated values of p, and that the likely reason this model does not
have greater support is the (statistically) small sample size.

Finally, note that for both models, the estimated occupancy probability is very similar;
0.595 and 0.581 from the first and second models respectively. Hence, even though there is
no clear indication of which model is the ‘best’, when interest is on estimating the probability
of occupancy, both models give essentially the same results, and both are 26% larger than the
naive estimate suggesting that the blue-ridge salamander was never detected at 1 in every 4
occupied transects.

2this likelihood is different from the likelihood discussed earlier derived from the probability statements of
the observed data



CHAPTER 3. SINGLE-SEASON MODEL 25

3.2.3 Fitting a custom model
Continuing with this example, we shall now fit the same models as above, but using the Cus-
tom Model option. The Custom Model option provides the user with a high degree of flex-
ibility for the types of models they would want to fit to the data as it provides the ability to
include covariates on all parameter types and also create relationships and constraints between
some parameters. The flexibility is achieved through the design matrix.

To perform a custom model analysis, begin a single-season analysis from the Run menu, or
alternatively we can repeat the previous type of analysis by clicking on the icon with the green
triangle towards the top of the Results Browser (this icon will be greyed out if no previous
analysis has been conducted in this session). Selecting the Custom radio button in the Model
box in the Setup Numerical Estimation Run window brings up the Design Matrix window.
The design matrix is used to specify what factors you want to include in the model for each
parameter type. Unlike Program MARK, in PRESENCE, the design matrix for each parameter
type is given a separate sheet, and in the single-season model there are two parameter types:
Occupancy and Detection probabilities (Figure 3.7).

Figure 3.7: Design Matrix window for single-season model. Occupancy tab is visible.

Each row of the design matrix represents a real parameter (e.g., occupancy and detection)
which are the parameters that are used to construct the probability statements. The real pa-
rameters associated with each row can also be considered as the response variables which are
going to be modeled. The columns of the design matrix represent the beta parameters; these
are the parameters that are actually estimated and are the regression coefficients associated
with the model that is defined by the cell entries in the design matrix. It should be noted
that there is a third dimension to the design matrix that drills back into the computer screen,
namely the sampling units. Therefore, if a numeric value is entered into the design matrix,
that value is applied to all sampling units. If a covariate name is entered into a grid cell, the
value of that covariate for each sampling unit is used in the regression equation.

A design matrix is read by moving along each row and summing the terms that result from
multiplying the value in the cell by the corresponding beta parameter. Typically in PRES-
ENCE where the real parameter (or response variable) is a probability, the logit-link function
is implicitly assumed. For example, the design matrix in Figure 3.7 defines the following
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logistic regression equation for the occupancy probability (the cell entry is in bold font):

logit (ψi) = a1 ·1
= a1 (3.7)

That is, the probability that a sampling unit (transects in this example) is occupied is the same
for all sampling units, the logit of which will be estimated as a1. The value of a1 is unknown
and will be estimated from the data. For the remainder of this example the design matrix for
occupancy will be left unchanged as there are no covariates in this data set. Note that the ’·’
symbol is equivalent to the multiplication symbol ’×’.

Figure 3.8: Design Matrix window for single-season model. Detection tab is visible.

Next, select the tab labeled Detection and note there are now five rows in the design
matrix (Figure 3.8, each one corresponding to the probability of detection in surveys 1 to 5
respectively (in general there will be one row in the detection design matrix for each survey).
For this design matrix there are five corresponding logistic regression equations:

logit (pi,1) = b1 ·1 = b1 (3.8)
logit (pi,2) = b1 ·1 = b1 (3.9)
logit (pi,3) = b1 ·1 = b1 (3.10)
logit (pi,4) = b1 ·1 = b1 (3.11)

logit
(

pi,5
)
= b1 ·1 = b1 (3.12)

So in effect, this design matrix represents a model where detection probability is the same for
all five surveys, the logit of which equals an amount b1. Therefore, this model is equivalent
to the first predefined model; there is a single occupancy probability for all transects, and
detection probability is constant both in time and across transects. To run this model, return to
the Setup Numerical Estimation Run window (you may need to navigate through your task
bar to locate the correct window), rename the model if desired3 and hit OK to Run. After
confirming the results, the Results Browser should now look as in Figure 3.9.

3the model naming convention used here is to list the model parameter types with the factors included for that
parameter given in parentheses. A dot ’.’ is used to denote a parameter that is constant.
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Figure 3.9: Results Browser window after fitting the psi(.)p(.) custom model.

Note that the results summary for the custom model that has just been fit (denoted as
psi(.),p(.)) is identical to the first predefined model. This is because both are exactly the
same model; the first predefined model is simply a shortcut for fitting this simple custom
model. Opening the output for the psi(.),p(.) model and comparing it the output for the first
predefined model shows that exactly the same results have been obtained. Below the initial
summary information in the output, the design matrices that have been used to fit the particular
model is given which is useful as the exact interpretation of the beta parameters (i.e., regression
coefficients) depends upon the design matrices that were specified.

Following the design matrices there is some more summary information, then a table ti-
tled Untransformed Estimates of coefficients for covariates (Beta’s) which presents the
estimated beta parameters (or regression coefficients), with the label for each beta parame-
ter in the leftmost column corresponding to those used in the design matrices. So here a1 is
estimated to be 0.383 with a standard error of 0.509, and b1 is estimated to be -1.053 with
standard error 0.301.

The real parameter estimates (occupancy and detection probabilities) are given below the
beta parameter estimates. As no covariates were used in this model, the values given apply to
all transects. Recall that the real parameters are calculated using the design matrices and the
logit link, so for occupancy the design matrix provides the equation (where the ‘hats’ indicate
we now have estimated quantities):

logit (ψ̂i) = â1
= 0.383

ψ̂i =
eâ1

1+ eâ1

=
e0.383

1+ e0.383

= 0.595

The standard error for ψ̂i is obtained using a technique known as the delta method (e.g.,
MacKenzie et al. (2006)), which for this model is relatively simple because the transformed
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quantity of interest is only a function of one beta parameter. Detail of the delta method is not
given here as PRESENCE performs those calculations for the user, but that is the underlying
method.

SE (ψ̂i) = ψ̂i (1− ψ̂i)SE
(

â1
)

= 0.595 ·0.405 ·0.509
= 0.123

A similar procedure is used to calculate the detection probabilities. Remember that the
model fit here assumed that detection probability was the same for all five surveys so the same
value is calculated five times. The final piece of the output for the custom model is a derived
parameter: a quantity that is not directly in the model structure, but can be calculated from
parameters that are. For the single-season model the derived parameter is the probability that
a unit is occupied given that the species is never detected there. So in this example, if the
salamander was not detected in any of the 5 surveys, what is the probability of blue-ridge
salamanders being present at a transect (see MacKenzie et al. (2006) for details)? Here that is
estimated to be 0.247 with a standard error of 0.147.

To fit the equivalent of the 1 group, Survey-specific P model, again select to run a custom,
single-season model. Leave the design matrix for occupancy as the default option (as in the
last model), and set the design matrix for detection probability to be as in Figure 3.10.

Figure 3.10: Detection tab of the Design Matrix window for fitting the model psi(.)p(Survey)
custom model.

A shortcut to creating this design matrix is to select the menu item Init>Full Identity

in the Design Matrix window. This creates the identity matrix which has as many columns
as rows, with 1’s on the main diagonal and 0’s elsewhere. From this matrix we can write the
following sets of equations.
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logit (pi,1) = b1 ·1+b2 ·0+b3 ·0+b4 ·0+b5 ·0 = b1 (3.13)
logit (pi,2) = b1 ·0+b2 ·1+b3 ·0+b4 ·0+b5 ·0 = b2 (3.14)
logit (pi,3) = b1 ·0+b2 ·0+b3 ·1+b4 ·0+b5 ·0 = b3 (3.15)
logit (pi,4) = b1 ·0+b2 ·0+b3 ·0+b4 ·1+b5 ·0 = b4 (3.16)

logit
(

pi,5
)
= b1 ·0+b2 ·0+b3 ·0+b4 ·0+b5 ·1 = b5 (3.17)

Note that the values associated with each beta parameter in each equation (i.e., the 1’s
or 0’s) correspond with the entries in the design matrix, and result in a model where the
probability of detecting the salamanders in each of the five surveys will be estimated by a
different beta parameter (i.e., b1-b5). Going back to the Setup Numerical Estimation Run
window, the model name needs to be changed before running the model. Model names are
completely arbitrary and the main point is that the model name should meaningful to the user.
The suggested name here is psi(.),p(Survey) indicating that occupancy is the same for all
transects and detection probability is different for each survey. After renaming the model, hit
Ok to Run, and after confirming the results, the Results Browser will appear as in Figure 3.11
where the summary information for the model psi(.),p(Survey) is the same as the predefined
model, 1 group, Survey-specific P.

Figure 3.11: Results Browser window after fitting the psi(.)p(Survey) custom model.

Opening the output for this model we again see the initial summary information followed
by the design matrices. Note the more complex design matrix for detection probability. Below,
the table of beta parameter estimates is presented and given the defined design matrix, the
estimated beta parameters b1-b5 represent the absolute probability of detecting salamanders
at an occupied transect in each survey (on the logit-scale). The real parameter estimates are
calculated in the same way as for the previous custom model.

Given the duplicate models that have been fit to the data, attempting to interpret the Re-
sults Browser window would not be very meaningful, particularly with respect to AIC model
weights and Model Likelihoods.

3.2.4 More on interpretation of estimates
The correct interpretation of the estimated occupancy probability would be that it is the proba-
bility of blue-ridge salamanders being present at a randomly selected transect from within the
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region of sampling. For example, from the psi(.),p(.) model, ψ̂i = 0.595, implying that if a
transect was randomly selected then the probability of blue-ridged salamanders being at that
transect would be, approximately, 0.6. Therefore, if 10 transects were randomly selected then
it would be expected (on average) that 6 of those transects would be occupied by blue-ridge
salamanders and 4 unoccupied.

Detection probabilities relate to the probability of finding the species in a single survey,
using the field methods that were employed, given the species was actually present at the
sampling unit. From the psi(.),p(.) model, the estimated detection probability was 0.247, sug-
gesting that if blue-ridge salamanders were present on a transect, they would only be detected
there once out of every 4 surveys, i.e., 25%.

3.3 Example 2: Mahoenui Giant Weta
In this example we shall fit models that involve covariates for both occupancy and detection
probabilities to data that has been collected on the Mahoenui giant weta (Deinacrida ma-
hoenui) in a scientific reserve by the Department of Conservation in the King Country district
of New Zealand. Seventy-two 3m-radius circular plots were surveyed between 3-5 times for
weta. Each plot was assessed as to the level of browsing by feral goats and each survey was
conducted by 1 of 3 observers. The level of browsing is an indicator of habitat condition at
each plot; browsed bushes have denser foliage while unbrowsed bushes tend to more open.
It was believed that the level of browsing at each plot would influence whether weta were
present, with browsed bushes being preferred as they provide better refuge from introduced
mammalian predators. It was also believed that the observers would differ in their ability to
find weta due to previous experience. Therefore, the level of browsing and observer are going
to be considered as site-specific and sampling occasion covariates respectively. This data set
was examined on page 116 of MacKenzie et al. (2006), see there for additional details.

The data is included in the sample data folder that is installed along with PRESENCE
in the spreadsheet Weta pg116.xls. This file consists of 5 sheets containing the detection-
nondetection data (on the sheet called ’detection histories’), whether a plot was browsed or
unbrowsed (’site covar’), and which observer conducted which survey (’Obs1’, ’Obs2’ and
’Obs3’). Each of the covariates are dummy variables that =1 if the covariate is of the value
indicated by the covariate name, and =0 otherwise. In this example the number of surveys is
not constant for all plots hence the detection-nondetection data includes missing observations
that are indicated with a ’-’. Note that the observer covariates contain missing values too,
and that these exactly correspond with the missing values in the detection-nondetection data.
Covariate values are allowed to be missing, but only if the detection-nondetection data for the
corresponding survey of the sampling unit is also missing. This assumption is required by
most statistical methods. Missing values for site-specific covariates are not allowed.

3.3.1 Starting a new project and entering the data
Complete the following steps to create the PRESENCE project:
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Figure 3.12: Photo credit: Mahoenui giant weta, Amanda Smale, Department of Conservation,
New Zealand.

1. Begin PRESENCE, start a new project and open the data input form.

2. Open the file Weta pg116.xls from the sample data folder using a spreadsheet package.

3. Copy and paste the detection-nondetection data from the spreadsheet into PRESENCE
in the same manner as for the previous example.

4. On the Data Input Form change the number of site-specific covariates to 2 and number
of sampling occasion covariates to 3. Note that additional tabs appear for sheets on
which to enter the covariate data (Figure 3.13).

5. Select the spreadsheet labeled site covar, highlight the range of the covariate data in-
cluding the covariate names (i.e., cells A1:B73) and copy the selected cells.

6. Return to the Data Input Form and select the tab labeled Site Covar.

7. Click on the top-left grid cell and make sure the cell border becomes a dotted line (not
a flashing cursor), then select Edit>Paste>Paste w/covnames (Figure ??). This
paste option pastes the covariate values into the grid cells and automatically renames
the covariates.

8. Select the spreadsheet labeled Obs1 and copy the values (cells A1:E72)

9. Return to the Data Input Form and select the tab labeled SampCov1. Make the top-left
cell (for site 1, survey 1) active and paste the values by selecting Edit>Paste>Paste

values.
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10. Rename the covariate by selecting Edit>Rename covariate (Figure ??) and in the
text box type Obs1 then hit OK.

11. Repeat the previous 3 steps for the covariates Obs2 and Obs3.

12. Once you have entered all 3 observer covariates, save the data file using an appropriate
name (e.g.,weta). Select No when prompted about the last column being frequency
data, and specify a meaningful title.

13. After successfully saving the data file, close the Data Input Form which will return
you to the Enter Specifications for PRESENCE Analysis window.

14. Check there are 72 sites, 5 surveys, 2 site covariates and 3 sampling occasion covariates.
If satisfied select OK.

15. After a couple of seconds a blank results browser should appear. Remember, if you do
not see the results browser, you have not successfully set up your project file.

Figure 3.13: Adjust the number of site-specific and sampling occasion covariates.

Figure 3.14: Pasting with covariate names for site-specific covariates.
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Figure 3.15: Menu option for renaming a covariate.

3.3.2 Including covariates for occupancy
Here, focus shall be upon fitting models that include covariates on occupancy and/or detection.
Obviously, models without covariates, as in the previous example, could also be considered
and fit to the data. Doing so would enable an assessment to be made about the importance of
the potential covariates either on the basis of AIC or likelihood-ratio tests. This will not be
done in this example, although users are encouraged to attempt such models with this data set.

The first model to fit supposes the probability of occupancy varies between plots according
to the level of browsing, and detection probability varies among days but is the same for all
3 observers. This model could be called psi(Browsed),p(Day). First, we shall fit the model,
then work back through it explaining what has actually been done. After setting up the project:

1. Select Run>Analysis:single-season and click on the Custom radio button. The
Design Matrix window should appear.

2. On the occupancy design matrix, right-click anywhere on the design matrix to open a
pop-up menu and select Add Col (the 5th item in the menu) to add an empty column on
the right-hand side of the design matrix.

3. Left-click on the new column, then select Init>*Browsed and the covariate name
Browsed will be inserted into the column (Figure 3.16. All available covariates are
listed in the Init menu, prefixed with a ‘*’.

• Alternatively the covariate name could be typed directly into the cell, although the
name must be 100% correct and PRESENCE is case sensitive.

4. Select the detection design matrix, then select Init>Full Identity to allow daily
detection probabilities (Figure 3.16).

5. Select the textbfSetup Numerical Estimation Run window, rename the model (e.g.,
psi(Browsed),p(Day)) then hit OK to Run.

6. Confirm the results when prompted.
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Figure 3.16: Design matrices for the model psi(Browsed),p(Day).

So what has happened? Lets start with the simple one; the design matrix for detection
probability. Recall that this design matrix has already been used in the blue-ridge salamander
example and that to read the design matrix, move along each row summing the terms produced
by multiplying the values in the grid cell with the corresponding beta parameters for each
column. The design matrix for detection probability represents the set of equations:

logit (pi,1) = b1 ·1+b2 ·0+b3 ·0+b4 ·0+b5 ·0 = b1 (3.18)
logit (pi,2) = b1 ·0+b2 ·1+b3 ·0+b4 ·0+b5 ·0 = b2 (3.19)
logit (pi,3) = b1 ·0+b2 ·0+b3 ·1+b4 ·0+b5 ·0 = b3 (3.20)
logit (pi,4) = b1 ·0+b2 ·0+b3 ·0+b4 ·1+b5 ·0 = b4 (3.21)

logit
(

pi,5
)
= b1 ·0+b2 ·0+b3 ·0+b4 ·0+b5 ·1 = b5 (3.22)

That is, detection probability on each day is represented by a different value b1-b5. Graphi-
cally, this could be presented as in Figure 3.17.

It is important to note that at this stage the values for b1-b5 are unknown (they will be
estimated by PRESENCE from the data), the graph is just to conceptualize the relationship
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Figure 3.17: Graphical representation of daily detection probabilities.

between detection probability and day for the model that has just been fit to the data. In this
case, there is no relationship or constraints on how detection probability might vary among
days; each day is free to have a unique value that is different to the others. That is, this
design matrix represents the model that allows detection probability to be day specific, with
all survey plots having the same probability on each day (as no site-specific covariates have
been included for detection).

Next, consider the design matrix for the occupancy probability, which is a representation
of the following equation.

logit (ψi) = a1 ·1+a2 ·Browsedi

= a1+a2 ·Browsedi (3.23)

Recall that Browsed is a covariate that was defined to =1 if plot i showed signs of browsing,
and =0 otherwise. Therefore, for an unbrowsed plot (where Browsedi = 0),

logit (ψi) = a1 ·1+a2 ·0
= a1 (3.24)
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and for a browsed plot (where Browsedi = 1),

logit (ψi) = a1 ·1+a2 ·1
= a1+a2 (3.25)

Note that a2 is therefore the difference in occupancy between a browsed and unbrowsed plot
(on the logit scale), or alternatively what effect browsing has on occupancy compared to plots
with no browsing (Figure 3.18).

Figure 3.18: Graphical representation of difference in occupancy at unbrowsed and browsed
plots.

Looking at the output from this model, â2 = 1.24 which, as it is >0, indicates that the
probability of occupancy is higher at browsed plots. In this fairly simple model, â2 can be
interpreted in a fairly straightforward manner, although for more complicated models it can
be useful to interpret the effect of a covariate in terms of an odds-ratio. Recall that the logit-
link is that natural logarithm of the odds of a ’successful’ event (in this case, the presence of
the weta), and that to calculate an odds-ratio, we can take the inverse-logarithm of the beta
parameter. That is:
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ÔRBrowsed = eâ2

= e1.24

= 3.44

Interpreting this odds-ratio, for every plot where weta are absent, weta would be present in
3.44 times more plots that had been browsed than had not been browsed. That is, if for every
unbrowsed plot where weta were absent there were 1.50 unbrowsed plots where weta were
present, then for every browsed plot where weta were absent there would be 5.16 (1.50×3.44)
browsed plots where weta were present. An approximate 2-sided 95% confidence interval for
the odds-ratio would be:

=
(
e1.24−2·0.787,e1.24+2·0.787)

=
(
e−0.27,e2.74)

= (0.76,15.49)

3.3.3 Including covariates on detection
As noted previously, both site-specific and sampling-occasion covariates may be used to model
detection probabilities. The mechanics of including them is essentially the same as above as
one can regard a site-specific covariate as a sampling-occasion covariate whose value may be
different in different sampling units, but is unchanging over time. For example, suppose the
model psi(Browsed),p(Browsed) was to be fit to the data, i.e., allowing the level of browsing
to effect both occupancy and detection probabilities (Figure 3.19).

The occupancy design matrix is unchanged from before, so lets focus on the detection
probability design matrix. To include the Browsed covariate for detection a column needs to
be added to the default design matrix (recall; right-click on the design matrix to open the pop-
up menu), then left-click on a cell in the new column and choose Init>*Browsed. The word
Browsed is repeated in each row of the design matrix indicating that for all surveys of plot i,
the value of Browsedi will be used. As defined here, the design matrix implies the following
series of equations:

logit (pi,1) = b1 ·1+b2 ·Browsedi = b1+b2 ·Browsedi (3.26)
logit (pi,2) = b1 ·1+b2 ·Browsedi = b1+b2 ·Browsedi (3.27)
logit (pi,3) = b1 ·1+b2 ·Browsedi = b1+b2 ·Browsedi (3.28)
logit (pi,4) = b1 ·1+b2 ·Browsedi = b1+b2 ·Browsedi (3.29)

logit
(

pi,5
)
= b1 ·1+b2 ·Browsedi = b1+b2 ·Browsedi (3.30)

As Browsed is a site-specific covariate that has the same value for all surveys, and there
are no other covariates or time effects included in the model, the same equation is repeated
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Figure 3.19: Design matrices for the model psi(Browsed),p(Browsed).

five times. For unbrowsed plots (Browsedi = 0), the equation becomes

logit
(

pi, j
)
= b1 (3.31)

and for a browsed plot (Browsedi = 1),

logit
(

pi, j
)
= b1+b2 (3.32)

hence b2 indicates how different detection of weta is (on the logit-scale) in a browsed vs
unbrowsed plot.

Including a sampling-occasion covariate for detection follows essentially the same process,
although now the value of a sampling-occasion covariate is, potentially, different for each
survey of the same plot. For example, for this study the observers were rotated around the
different plots hence the probability of detecting weta in a particular survey could be different
depending on which observer conducted the survey. In the data file, the Obs1, Obs2 and
Obs3 covariates indicate which plot was surveyed by which observer on a particular day. So,
Obs2i, j = 1 if observer 2 surveyed plot i on day j, or = 0 if the survey was conducted by
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observers 1 or 3 (i.e., not by observer 2). The model psi(Browsed),p(Obs) can be fit to the
data with the design matrices given in Figure 3.20.

Figure 3.20: Design matrices for the model psi(Browsed),p(Obs).

To include the Obs2 and Obs3 covariates, add 2 columns then select the respective co-
variates from the Init menu. The Obs1 covariate does not appear in the design matrix as
observer 1 is going to be treated as the standard or control to which the other observers will
be compared. The design matrix represents the following series of equations for detection:

logit (pi,1) = b1 ·1+b2 ·Obs2i,1 +b3 ·Obs3i,1 = b1+b2 ·Obs2i,1 +b3 ·Obs3i,1 (3.33)
logit (pi,2) = b1 ·1+b2 ·Obs2i,2 +b3 ·Obs3i,2 = b1+b2 ·Obs2i,2 +b3 ·Obs3i,2 (3.34)
logit (pi,3) = b1 ·1+b2 ·Obs2i,3 +b3 ·Obs3i,3 = b1+b2 ·Obs2i,3 +b3 ·Obs3i,3 (3.35)
logit (pi,4) = b1 ·1+b2 ·Obs2i,4 +b3 ·Obs3i,4 = b1+b2 ·Obs2i,4 +b3 ·Obs3i,4 (3.36)

logit
(

pi,5
)
= b1 ·1+b2 ·Obs2i,5 +b3 ·Obs3i,5 = b1+b2 ·Obs2i,5 +b3 ·Obs3i,5 (3.37)

If the jth survey of a plot was conducted by observer 1, hence both Obs2i, j and Obs3i, j = 0,
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the equations would reduce to:

logit
(

pi, j
)
= b1, (3.38)

or if observer 2 had conducted the survey, where Obs2i, j = 1 and Obs3i, j = 0;

logit
(

pi, j
)
= b1+b2, (3.39)

and

logit
(

pi, j
)
= b1+b3, (3.40)

if observer 3 had conducted the jth survey of the plot, hence Obs2i, j = 0 and Obs3i, j = 1.
Therefore b2 and b3 in this model indicate how different detection probability is (on the logit
scale) for observers 2 and 3, respectively, compared to observer 1; a negative value would
indicate they are less effective at detecting weta than observer 1, while a positive value would
suggest they detect weta more frequently (Figure 3.21).

Figure 3.21: Graphical representation of observer effect on detection probabilities. Detection
for observers 1, 2 and 3 are indicated by the red squares, blue circles and black triangles
respectively.

Note that users are not restricted to only fitting univariate models (i.e., models with single
covariates). For example, it may be reasonable to consider that both the level of browsing
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at a plot and observers have an effect on the detection probability. It is relatively straight
forward to fit such models in PRESENCE by adding additional columns to the design matrix
and inserting the required covariates.

3.3.4 Bringing it together
For this final model that shall be fit in this weta example, the entire process for fitting a model
to the data shall be worked through from conceptualizing the desired model, to construction
of the design matrices, to interpretation of results.

The single-season occupancy model has two components, occupancy and detection. In
PRESENCE, there are separate design matrices enabling the user to focus on each individual
component when constructing models to fit to the data. This can be useful to compartmentalize
the problem, although the user must recognize and understand that the two components are
inextricably linked and that the results suggested for one component will often be influenced
by what has been specified for the other component.

Here a model will be fit where the presence of weta is affected by the level of browsing
at a plot, while detection varies by survey day (e.g., due to variation in weather conditions)
and may also be different for each observer. Further, the differences between observers was
thought to be relatively consistent over the week of survey because any difference is due to
previous experience, i.e., in would be expected that one observer would consistently be the
best at finding weta and another to consistently be the worse, rather than a situation where the
relative abilities of the observers is changing with each day. In terms of the model notation
used here, the model we wish to fit to the data could be called psi(Browsed),p(Day+Obs); the
’+’ is indicating an additive effect between day and observers implying the consistency of the
effect across the other factors.

The psi(Browsed) portion of the model has been used previously so the same design matrix
can be reused here. In order to define the p(Day+Obs) component, the form of the design
matrix needs to be determined. For users with some experience in linear modeling (e.g., linear
regression or generalized linear models), construction of the design matrix from an equation
that represents the model of interest may be relatively straight forward, but for those with little
or no experience it can often help to step through the process while learning these techniques.
Often, however, roughly sketching the expected relationship between the factors of interest
and occupancy or detection probabilities can be a useful starting point to visualize the type of
model that is desired, use that to define a series of equations for each real parameter, then use
the equations to construct the design matrix.

Figure 3.22 is a graphical representation of the desired model for detection probability.
There is clearly daily variation in detection, and note the consistent difference between each
observer. The sketch has also been labeled, with the logit-detection probabilities for observer
1 denoted b1-b5, the difference between observers 1 and 2 on each day labeled b6 and the
difference between observers 1 and 3 each day labeled b7. From this sketch we need to create
a series of equations, one for each row of the detection design matrix (i.e., one for the detection
probability on each survey day) utilizing the covariates that are available. Note that for each
day, there are currently three detection probabilities (one for each observer), so the first step is
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Figure 3.22: Graphical representation of daily and observer effects on detection probabilities.
Detection for observers 1, 2 and 3 are indicated by the red squares, blue circles and black
triangles respectively.

to find a form that allows the three probabilities to be expressed as a single equation. Focusing
on the first survey day, the three points could be defined by the following equations:

logit
(

pi,1,Obs1

)
= b1 (3.41)

logit
(

pi,1,Obs2

)
= b1+b6 (3.42)

logit
(

pi,1,Obs3

)
= b1+b7 (3.43)

that is, if the survey was conducted by observer 2, then add an amount of b6 on to the value for
observer 1, and if the survey was conducted by observer 3, add an amount b7 to the value for
observer 1. This can be collapsed to a single equation through the observer indicator variables;
recall that if a survey was performed by observer 1, both Obs2i, j and Obs3i, j = 0; for observer
2, Obs2i, j = 1 and Obs3+ i, j = 0; and for observer 3 then Obs2i, j = 0 and Obs3+ i, j = 1.
Hence, detection probability on day 1 can be expressed by the single equation:

logit (pi,1) = b1+b6 ·Obs2i,1 +b7 ·Obs3i,1, (3.44)
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and doing the same for the other days yields the series of equations

logit (pi,1) = b1+b6 ·Obs2i,1 +b7 ·Obs3i,1 (3.45)
logit (pi,2) = b2+b6 ·Obs2i,2 +b7 ·Obs3i,2 (3.46)
logit (pi,3) = b3+b6 ·Obs2i,3 +b7 ·Obs3i,3 (3.47)
logit (pi,4) = b4+b6 ·Obs2i,4 +b7 ·Obs3i,4 (3.48)

logit
(

pi,5
)
= b5+b6 ·Obs2i,5 +b7 ·Obs3i,5 (3.49)

Note the similarities with each equation, and that the only essential difference is the first
term in the equation, i.e., the intercept term. However, in order to construct the design matrix
all of the beta parameters (i.e., the regression coefficients) have to be included in each equation.
This is achieved very simply by recognizing that any beta parameter multiplied by 0 is still 0,
and similarly, any beta parameter multiplied by 1 equals the beta parameter again. Therefore,
the series of equations can be expanded as:

logit (pi,1) = b1 ·1+b2 ·0+b3 ·0+b4 ·0+b5 ·0+b6 ·Obs2i,1 +b7 ·Obs3i,1 (3.50)
logit (pi,2) = b1 ·0+b2 ·1+b3 ·0+b4 ·0+b5 ·0+b6 ·Obs2i,2 +b7 ·Obs3i,2 (3.51)
logit (pi,3) = b1 ·0+b2 ·0+b3 ·1+b4 ·0+b5 ·0+b6 ·Obs2i,3 +b7 ·Obs3i,3 (3.52)
logit (pi,4) = b1 ·0+b2 ·0+b3 ·0+b4 ·1+b5 ·0+b6 ·Obs2i,4 +b7 ·Obs3i,4 (3.53)

logit
(

pi,5
)
= b1 ·0+b2 ·0+b3 ·0+b4 ·0+b5 ·1+b6 ·Obs2i,5 +b7 ·Obs3i,5 (3.54)

To construct the design matrix (Figure 3.23), the value associated with each beta parameter
in each equation (the values in bold) are entered into the respective cell of the design matrix.
Note that the number of beta parameters used in the equations defines the number of columns
required in the design matrix, i.e., in this case, seven.

Figure 3.23: Detection design matrix for the model psi(Browsed),p(Day+Obs).

Set up this design matrix in PRESENCE (and also the occupancy design matrix cor-
responding to the (psi(Browsed) portion of the model as used previously), rename (e.g.,
psi(Browsed),p(Day+Obs)) and run the model.
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Figure 3.24: Beta parameter estimates from the model psi(Browsed),p(Day+Obs).

Open the output and locate the table of beta parameter estimates (Figure 3.24). Focusing on
occupancy initially, the two estimated beta parameters of interest are â1 = 0.02 and â2 = 1.17.
With these, the equation for estimating the probability of occupancy becomes:

logit (ψi) = 0.02+1.17 ·Browsedi (3.55)

It is important to realize that these beta parameters, or regression coefficients, have now been
corrected for detection so this equation can be used to describe and predict the probability of
weta being present at other plots without further regard to detection issues. For this particular
example there is only a single indicator variable included in the model, but the principle holds
true for more complex situations. The estimated probability of occupancy for each surveyed
plot is given as part of the output (starting from immediately below the table of beta parame-
ters), and here those values are either 0.77 or 0.50 for plots that were browsed or unbrowsed
by goats respectively. Determining those values come from the following calculations. Firstly,
for an unbrowsed plot (Browsedi = 0):

logit (ψi) = 0.02+1.17 ·0
= 0.02

ψi =
e0.02

1+ e0.02

= 0.50

and for a browsed plot (Browsedi = 1):

logit (ψi) = 0.02+1.17 ·1
= 1.19

ψi =
e1.19

1+ e1.19

= 0.77



CHAPTER 3. SINGLE-SEASON MODEL 45

These values indicate that the probability of weta being present at a randomly selected plot
would be 0.50 if the plot was unbrowsed and 0.77 if it was browsed. As was done previously,
the effect of goat browsing on weta occupancy can also be interpreted in terms of an odds
ratio, which may be preferable when more covariates are included in a model. That is:

ÔRBrowsed = eâ2

= e1.17

= 3.22

which means that for every plot where weta were absent, weta would be present in 3.22 times
more plots that had been browsed than had not been browsed.

Inserting the estimated beta parameters for detection yields a series of equations that can
be used to describe and predict detection probabilities for each survey. That is;

logit (pi,1) =−1.30+0.73 ·Obs2i,1 +1.07 ·Obs3i,1

logit (pi,2) =−1.45+0.73 ·Obs2i,2 +1.07 ·Obs3i,2

logit (pi,3) =−2.24+0.73 ·Obs2i,3 +1.07 ·Obs3i,3

logit (pi,4) =−1.37+0.73 ·Obs2i,4 +1.07 ·Obs3i,4

logit
(

pi,5
)
=−0.34+0.73 ·Obs2i,5 +1.07 ·Obs3i,5

That the coefficients for Obs2i, j and Obs3i, j are both positive indicates the detection proba-
bilities for both observers 2 and 3 are greater than the probability of detection for observer
1.

Table 3.1: Estimated detection probabilities for each observer on each day for the Mahoenui
weta example

Observer Day 1 Day 2 Day 3 Day 4 Day 5
1 0.21 0.19 0.10 0.20 0.43
2 0.36 0.33 0.18 0.34 0.61
3 0.44 0.41 0.24 0.43 0.69

Table 3.1 contains the estimated detection probabilities for each observer on each day, ob-
tained by inserting the appropriate covariate values into the above equations and converting
the results from the logit to probability scale. According to this model, there is a good deal
of daily variation in detection probability and substantial differences between observers. Note
also that even though the detection component of the model was defined as an additive effect
between day and observer (i.e., p(Day+Obs), with a consistent difference between each ob-
server each day), that was on the logit-scale and once converted to the probability scale, that
effect is no longer consistent. For example, on day 3, the difference in detection probabilities
for observer 1 and 3 is 0.14, but on day 5 that difference is 0.26. The inconsistent difference on
the probability scale is a consequence of the non-linear transformation and occurs whenever
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the logit-link function is used (e.g., logistic regression), and it is for this reason why interpret-
ing effects in terms of the odds-ratio is recommended in general. For example, the odds-ratio
for detection for the observer 3 compared to observer 1 can be calculated as:

ÔRObs3 = eb̂7

= e1.07

= 2.92

which means that for every survey where weta are not detected at an occupied plot, observer 3
will detect weta in (approximately) 3 times as many surveys than observer 1. An approximate
95% confidence interval for the odd-ratio would be:

=
(

eb̂7−2·SE(b̂7),eb̂7+2·SE(b̂7)
)

=
(

e1.07−2·0.46,e1.07+2·0.46
)

=
(

e0.15,e1.99
)

= (1.16,7.32)

3.4 Example 3: Multiple and non-linear covariates, and pro-
ducing species occurrence maps

This final single-season example for PRESENCE highlights a number of points; that PRES-
ENCE is not restricted to fitting univariate models, covariates maybe continuous as well as
categorical and that the results from PRESENCE can be used to produce species distribution
maps. The associated spreadsheet for this example is also a useful reference for some of the
steps necessary for preparing the data prior to entering it into PRESENCE. The data itself is
fictitious but was simulated to replicate a real-world example.

3.4.1 Preparing the data
From the PRESENCE sample data folder, open the spreadsheet Single-season example.xls
and go to the Study Sites sheet. Detection/nondetection data has been collected for 148 units,
each surveyed four times. Habitat Type and Elevation for each unit has been recorded (these
are site-specific covariates), and further to the right of the page, note that the time of the survey
has also been recorded, which is going to be used as a sampling-occasion covariate (Time of
Day). Also on the sheet are transformations of the covariates that have to be made prior to
entering the data into PRESENCE.

Habitat Type is a categorical covariate with three levels which has been recorded as either
type A, B or C. As noted earlier, this must be entered into PRESENCE as a series of indicator
variables, in this case as the variables HabA, HabB and HabC which equal 1 if the unit was
of the respective type, and 0 if the unit was one of the other habitat types. Calculation of the
indicator variables was done using the if formula.
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Elevation is a continuous covariate, and while not strictly necessary, it is often advisable
to standardize continuous covariates particularly those whose values tend to be a long way
from 0. Here, elevation has been standardized by subtracting 1000 (which is close to the mean
elevation), then dividing the result by 100. That is, standardized elevation (Elei) has been
calculated as:

Elei =
Ei−1000

100
(3.56)

where Ei is the actual elevation recorded at each unit.
Additional site-specific covariates have also been defined to enable an interaction between

the Habitat Type and Elevation covariates. An interaction might be considered if it is thought
that the effect of elevation on occupancy may be different in different habitat types. To repre-
sent this interaction term then a series of covariates have to be defined that are simply the prod-
uct of the habitat indicator variables and the standardized elevation covariate, hence this results
in three additional covariates being calculated (labeled HabA.Ele, HabB.Ele and HabC.Ele).
These interaction covariates have a similar form to the indicator variables, although instead of
having values that are either 0 or 1, the values are either 0 or the standardized elevation. Note
that the interaction terms are not separately standardized as then the necessary relationships
between the covariates would be lost. Take some time to examine spreadsheet and understand
how the site-specific covariates to entered into PRESENCE have been calculated.

Figure 3.25: Linear and quadratic relationships between Time of Day and logit-detection.
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Time of Day (ToD) for each survey was also recorded as it was expected that the de-
tectability of the species would change during the day due to activity patterns. Furthermore,
not only was it expected that detectability would change during the day, but that it would peak
at a certain point when the species is most active and be lower at other times. Hence, using
only ToD as a covariate would not be sufficient as that would assume a linear relationship be-
tween ToD and detection, i.e., detection as gradually increasing or decreasing throughout the
day (Figure 3.25). One approach to allow the situation envisaged would be to use a quadratic
relationship between detection and ToD day (Figure 3.25) which can be accomplished by
defining a new covariate that equals ToD2. That is, the detection component that will be fit to
the data will be of the form:

logit
(

pi, j
)
= b1+b2 ·ToD+b3 ·ToD2, (3.57)

by doing so, we are incorporating a non-linear relationship between the probability and co-
variate of interest. Note that as the quadratic relationship has been drawn (concave down), b3
would have to be a negative value. The quadratic relationship could also be concave up when
b3 is positive. However, by including the ToD2 values as a covariate in a model, PRESENCE
will estimate a value for b3 from the data. Note that one property of a quadratic relationship is
that it is symmetric about the maximum (or minimum). Also note that when converted to the
probability scale, the quadratic relationship can appear more like a bell-curve (Figure 3.26).
Other non-linear relationships with covariates, e.g., cubic, square-root or logarithmic, could
be defined in a similar way.

As recorded (minutes since 6am), the ToD covariate has values that are large and tend to
be a long way from 0, therefore the values have been standardized in the spreadsheet as hours
since 8:30am using the formula:

ToDi j =
Timei j−150

60
(3.58)

where Timei j is the original time of the survey. 8:30am (i.e., 150 minutes after 6am) was
used because it was close to the mean time of the surveys. Following the standardization, The
standardized ToD has been squared; note that the square covariate has not been re-standardized
as the desired relationship with ToD would be lost.

As can be seen from this example, a good deal of forethought needs to happen about the
types of models that will be fit to the data in an analysis prior to even starting PRESENCE
such that the appropriate covariates can be defined. I would argue this a good point as it forces
the analyst to think careful about what it is they are trying to achieve with the data rather
than following a more haphazard process. It should be noted, however, that is possible to add
additional covariates to a PRESENCE data file even after a project has begun if required. Once
the covariates have been added and the data file re-saved, close then restart PRESENCE and
open the desired project so that PRESENCE recognizes the new covariates are available.

3.4.2 Entering the data in PRESENCE
Start a new project in PRESENCE and click the button in the lower-right corner to bring up
the Data Input Form window. Then,
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Figure 3.26: Linear and quadratic relationships between Time of Day and logit-detection when
converted to the probability scale.

1. Copy and paste the detection data from the spreadsheet (recall that to paste the data,
within the Data Input window select Edit>Paste>Paste Values). PRESENCE
will automatically add the required number of rows and columns.

2. Change the number of site covariates to 7 and number of sampling covariates to 2.

3. In the spreadsheet, select and copy the 7 site covariates that have been defined (i.e., 3
indicator variables, standardized elevation and 3 interaction terms), including the row of
covariate names.

4. Select the Site Covariate tab in PRESENCE, make sure the top left-most cell is se-
lected then paste in the covariates along with the covariate names (Edit>Paste>Paste

w/covnames) to automatically rename the covariates.

5. Copy the standardized ToD sampling occasion covariate from the spreadsheet.

6. Select the SampCov1 tab in PRESENCE, make sure the top left-most cell is selected
and paste in the covariate values (Edit>Paste>Paste Values). Rename the covariate
as ToD (Edit>Rename covariate).
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7. Repeat the previous 2 steps for the ToD-squared covariate, renaming it appropriately
(e.g., ToD sq).

8. Save the data file with an appropriate name and title, selecting No when prompted about
whether the last column contains frequency data.

9. Once the data file has been saved, close the Data Input Form window, review the
information in the Project Setup Window for accuracy, and if satisfied, select OK to
complete the creation of the project.

After completing these steps, an empty Results Browser table should be on the screen. If
not, you have not yet created the project and should check that all of the above steps have
been complete. You should not attempt to setup a model for analysis as it will not run without
seeing the empty Results Browser.

3.4.3 Fitting a model
Here we are going to fit a single model to the data, and use those results to produce a species
distribution map using third-party software, in this case, with the software R.

In this model, occupancy probability shall be function of habitat type and elevation, and
detection probability a function of habitat type and time of day. More specifically, the model is
to allow the effect of elevation on species occurrence to be different in different habitat types
which is achieved by including the interaction terms between these two covariates. Without
the interaction terms, we can only fit a model where the effect of elevation is the same in
different habitats, which may often be a reasonable option, but is not a model of interest here.
Habitat Type A will be used as a standard against which the effect of the other habitat types
will be compared, therefore not all of the indicator variables and interaction terms will be
required here. The equation representing the model that is to be fit is:

logit (ψi)= a1+a2 ·HabBi+a3 ·HabCi+a4 ·Elei+a5 ·HabB.Elei+a6 ·HabC.Elei. (3.59)

As with the previous examples, it is the terms associated with each of the regression coefficient
that will get entered into the occupancy design matrix in PRESENCE (presuming a ’1’ for
a1). For those with some experience with regression and linear-modeling, the derivation of
this equation may be relatively straight forward, but for those with less experience it may be
beneficial to work through the process. Consider the sketch of the model we want to fit to the
data (Figure 3.27), noting that there are 3 lines with different intercepts and slopes, one for
each habitat type.

The general formula for any straight line is y = a+b ·x, where a is the intercept (the value
at x = 0, where the line crosses the y-axis) and b is the slope of the line (how quickly y changes
as x changes). With this in mind, we can write an equation for each of the three lines in Figure
3.27. For habitat A (the red line), the intercept has been labled as a1 and the slope of the line
is a4, therefore the equation for the line is:

logit (ψi) = a1+a4 ·Elei. (3.60)
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Figure 3.27: Graphical representation of the model for occupancy probability with an interac-
tion between Elevation and Habitat Type.

For habitat B (the blue line), the intercept has been labeled as a1+a2 with a2 indicating how
different the intercept is for habitat B compared to habitat A. The slope of the line is a4+a5
with a5 indicating how different the slope of the line is for habitat B compared to habitat A,
i.e., how different is the effect of elevation on occupancy in habitat B compared to habitat A.
Therefore, the equation for the blue line is:

logit (ψi) = (a1+a2)+(a4+a5) ·Elei. (3.61)

Similarly for habitat C, the black line. The intercept has been labeled as a1+ a3 with a3
indicating how different the intercept is for habitat C is compared to habitat A. The slope
of the line is a4+ a6 with a6 indicating how different the slope of the line is for habitat C
compared to habitat A, i.e., how different is the effect of elevation on occupancy in habitat C
compared to habitat A. Therefore, the equation for the black line is:

logit (ψi) = (a1+a3)+(a4+a6) ·Elei. (3.62)

Note that if a5 and a6 were 0, that would imply that the effect of elevation on occupancy was
the same in all three habitats. Also note that the lines as drawn in Figure 3.27 are completely
arbitrary and are just to conceptualize the model that is to be fit to the data; the estimated
parameters may be quite different from those indicated.
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The next step is to combine the three equations into one through the use of the habitat indi-
cator variables and interaction terms. With these terms the appropriate regression coefficients
get included where required. Recall that the indicator variables = 1 where the unit is of that
type and = 0 otherwise, therefore multiplying the indicator variable by a regression coefficient
means that the regression coefficient gets included in the equation for a unit of that type, oth-
erwise it does not. Similarly with the interaction terms, they equal the elevation of the unit
(i.e., Elei) if the unit was of the respective habitat type, and 0 otherwise. Hence, multiplying
the interaction term by a regression coefficient will equal the coefficient times the elevation of
the unit if the unit is of that habitat type and 0 otherwise. For example, a5 ·HabB.Elei will
equal a5 ·Elei if the unit is habitat type B and 0 otherwise. Using these variables, the three
equations can combined into a single equation as in Equation 3.59. To verify the form of the
general equation is correct we can substitute in some covariate values to ensure the equations
for the individual habitat types are obtained. For example, if a unit is habitat type C, Equation
3.59 becomes:

logit (ψi) = a1+a2 ·0+a3 ·1+a4 ·Elei +a5 ·0+a6 ·Elei

= a1+a3+a4 ·Elei +a6 ·Elei

= (a1+a3)+(a4+a6) ·Elei (3.63)

Based upon Equation 3.59, the required occupancy design matrix is given in Figure 3.28
Once again, note that the entries within the cells are simply the terms associated with the
respective regression coefficients from the estimating equation.

Figure 3.28: Design matrix for occupancy probability

The detection component of the model is to have both a quadratic time of day effect, and a
habitat effect. That is, the quadratic time of day effect is intended to represent the assumption
that there is a optimal time of data were detection probability is highest, while the effect of
habitat type on detection is that detection is consistently different in different habitat types
throughout the day. Therefore, the peak in detection happens at the same time of day in all
habitats. It will not be done here, but if it was believed that the highest detection probability
of achieved at different times of day in different habitats, that would require an interaction
between time of day and habitat type, which would have to have defined as separate covariates
outside of PRESENCE, then included in the data file.

Figure 3.29 is a sketch of the intended relationship between detection, time of day and
habitat type. Note that the resulting parabolic shape of the quadratic relationship with time of
day is symmetric, and also that the optimum does not occur where x = 0 (i.e., at 8:30am given
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Figure 3.29: Graphical representation of the model for detection probability with a quadratic
Time of Day effect and an additive effect of Habitat Type

the standardized covariate). In order to allow this then both ToD and ToD2 terms are required.
That is, the equation of the red line for habitat A could be expressed as:

logit
(

pi, j
)
= b1+b2 ·ToDi, j +b3 ·ToD2

i, j. (3.64)

The equation for habitat B (the blue line) is similar, although it has been shifted up by an
amount b4. This amount could be combined with the intercept term for the red line, but here
will be left separate given the labeling that has been used, i.e.,

logit
(

pi, j
)
= b1+b2 ·ToDi, j +b3 ·ToD2

i, j +b4. (3.65)

Using the same reasoning, the equation for detection in habitat C would be:

logit
(

pi, j
)
= b1+b2 ·ToDi, j +b3 ·ToD2

i, j +b5. (3.66)

Using the indicator variables that have been defined for each habitat type, the following
general equation for detection can be developed:

logit
(

pi, j
)
= b1+b2 ·ToDi, j +b3 ·ToD2

i, j +b4 ·HabBi +b5 ·HabCi (3.67)
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Figure 3.30: Design matrix for detection probability

As there is no additional among-survey variation in detection (beyond that caused by the time
of the surveying), the same equation will apply to all four surveys and the four rows of the
detection design matrix will be identical (Figure 3.30).

Once the design matrices have been constructed;

1. return to the Setup Numerical Estimation Run window

2. provide a meaningful name (psi(Habitat*Ele),p(ToD sq+Habitat), is suggested)

3. select Print V-C matrix from the list of options on the right-hand side

4. run the model

Here, the option to print the variance-covariance (V-C) matrix has been selected because
when the probability of occurrence is predicted for unsurveyed places, a measure of the un-
certainty is also desired. To obtain this, the variance-covariance matrix is required to account
for any correlation between the estimated beta parameters.

After fitting this model to the data, the estimated beta parameters from the output are
given in Table 3.2, which allows the completion of the logistic regression equations for both
occupancy and detection probabilities.

logit (ψi) =−1.14+0.73 ·HabBi +2.77 ·HabCi

+0.48 ·Elei−0.18 ·HabB.Elei +0.45 ·HabC.Elei. (3.68)

From this model, it appears that there is both a habitat and elevational effect on occupancy.
The elevational effect may be different in each habitat type (a5 and a6 are somewhat different
from 0, but do have large standard errors relative to the size of the estimate), and the intercepts
also appear to be quite different for each habitat type (consider the estimates for a2 and a3).
Figure 3.31 presents the estimated relationships between occupancy, elevation and habitat
type on both the logit and probability scale respectively. Again, it should be stressed that as
the methods used to analyze the data have accounted for imperfect detection, the estimated
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Table 3.2: Estimated beta parameters and standard errors (SE) for model
psi(Habitat*Ele),p(ToD sq+Habitat)

Beta Estimate SE
a1 -1.138 0.520
a2 0.727 0.593
a3 2.773 0.950
a4 0.483 0.233
a5 -0.179 0.267
a6 0.449 0.390
b1 0.513 0.457
b2 -0.453 0.121
b3 -0.509 0.101
b4 -0.013 0.507
b5 0.187 0.497

regression coefficients have been automatically corrected hence they can be used to make
inferences about species occurrence without further regard for detection issues.

logit
(

pi, j
)
= 0.51−0.45 ·ToDi, j−0.51 ·ToD2

i, j−0.01 ·HabBi +0.19 ·HabCi (3.69)

For detection, there does appear to be a optimal time of day where detection is highest as
the estimate for b3 is negative which gives a concave-down parabolic shape (a positive value
for b3 would imply a concave-up parabolic shape suggesting detection would be lowest at
some point during the day and higher at other times). Habitat-type does not appear to have
much of an effect on detection given the small estimates for b4 and b5. Figure 3.32 present the
estimated relationships between detection, time of day and habitat type on both the logit and
probability scale respectively. These suggest that detection is highest at approximately 8am.

3.4.4 Producing a species distribution map in R
In this final section the software R shall be used to produce a species distribution map for a
landscape based upon the model fit to the data in this example. The basic rationale is that
regions with high predicted probabilities of occupancy would represent cores areas of the
species distribution where the species is likely to be found more frequently, while regions
with low occupancy probabilities would represent the edge of the species distribution. For
the construction of this map, it is presumed that the resolution of the map is set such that
the size of each pixel is at the same scale as the sampling units from which the data was
collected. In fact, if a desired outcome of such an occupancy analysis is to produce a map,
the required resolution of the map can be useful to determine an appropriate definition of a
sampling unit. It is also important to recognize that in order to be able to make predictions at
unsurveyed locations using the estimating equation, the equation can only contain covariates
whose values are available for the unsurveyed locations. Therefore, covariates whose values
can only be known from physically visiting a location may not be useful for this type of
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Figure 3.31: Estimated relationship between elevation and habitat type with logit-occupancy
(left) and occupancy probability (right).

exercise. This holds for any technique used to develop a species distribution model and is not
unique to these methods.

Detailed instructions are not given here as they require some knowledge of R, but the basic
procedure is to the use the regression equation for occupancy that results from the analysis in
PRESENCE to predict the probability of occupancy at a set of locations in the area of interest
based upon the available covariate values for each location. The portion of the V-C matrix
in the output that relates to the beta parameters associated with occupancy (here, a1-a6) is
used to calculate a standard error for the predicted occupancy probability, and also limits of a
confidence interval; all of which can also be plotted.

In the PRESENCE sample data folder, there is text file called Ex3 landscape.txt. This
is a tab-delimited text file that contains the habitat type and elevational information for 1000
locations on a 50× 20 grid. The habitat type and elevation variables have been converted to the
same set of variables used in the analysis using the same indicator variables, standardization
and interactions. The R code to perform the calculations and produce the graphs is provided
in the PRESENCE sample data folder, ex3Rcode.r. The R code will need slightly modified to
specify the location of the PRESENCE sample data folder, otherwise the code can be executed
or copy and pasted into R. Once completed, a series of plots should be produced indicating the
predicted distribution of the species and measures of uncertainty (Figures 3.33-3.36)
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Figure 3.32: Estimated relationship between time of day and habitat type with logit-detection
(left) and detection probability (right).

Figure 3.33: Predicted probability of occupancy across a fictitious landscape
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Figure 3.34: Standard error of predicted probability of occupancy across a ficittious landscape

Figure 3.35: Lower limit of a 95% confidence interval on predicted probability of occupancy
across a fictitious landscape



CHAPTER 3. SINGLE-SEASON MODEL 59

Figure 3.36: Upper limit of a 95% confidence interval on predicted probability of occupancy
across a fictitious landscape



Chapter 4

Multi-season model

4.1 Basic modeling approaches
When data has been collected for more than one time period, or sampling season, then ques-
tions about changes in occupancy or species distributions naturally occur. There are two gen-
eral approaches that could be taken here. The first is to simply regard the multi-season data
as a series of single-season data sets and apply the single-season model to each season of data
either individually or through a combined analysis. By doing so, one could address questions
such as whether the pattern in occupancy each season is changing or examine the data for
overall effects such as a trend in occupancy. Such an approach may be suitable for some types
of problems. A second approach is to consider changes in occupancy through time at the scale
of individual sampling units (Figure 4.1), i.e., whether the species is present or absent at a
location at a particularly point in time and how that changes through time.

Figure 4.1: Schematic of unit-level changes in occupancy through time.

60
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Using this alternative approach, rather than modeling changes in occupancy patterns, the
underlying processes of change in occupancy are modeled which will likely yield much more
interesting and useful insights. While there are a variety of terms that could be used, following
MacKenzie et al. (2003) and MacKenzie et al. (2006) the processes shall be described in terms
of local colonization and local extinction probabilities. These could be defined as:

γt: probability a unit is colonized by the species, the unit goes from unoccupied to occupied,
between seasons t and t +1.

εt: probability the species goes locally extinct from a unit, the unit goes from occupancy to
unoccupied, between seasons t and t +1.

Note that these processes are between season events, i.e., changes occur between the main
survey periods; within a season, the species is presumed to be either present or absent at a unit
for the duration of the surveying, i.e., units are closed to changes in occupancy. In addition to
these dynamic occupancy probabilities, an initial occupancy probability must also be defined
for the first season, e.g., ψ1. In combination, these occupancy-related parameters can be used
to fully describe the changes in unit-level occupancy.

Figure 4.2: General sampling framework for multi-season occupancy model. Changes in
occupancy happen between seasons, and repeat surveys are conducted within seasons when
units are closed to changes in occupancy.

However, nondetection of the target species also creates problems in terms of colonization
and extinction events. For example, if the species was found at a location in one year, but
not found the next, has it really gone locally extinct from that place? Dealing with imperfect
detection in a multi-season setting is similar to the single-season approach and requires repeat
surveys within each season. The general sampling framework is given in Figure 4.2. In terms
of the modeling, the basic approach is to again develop probability statements that include
all possible options for what may have actually happened based upon the observed data. For
example, consider the follow detection history:
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hi = 11 00 01,

which represents a location that was surveyed for three seasons, with two surveys per season.
The species was detected in both surveys of the first season, not detected in either of the
surveys in season 2 and only detected in the second survey of season 3. Because of imperfect
detection, there is ambiguity about whether the species was present at the unit in season 2 or
not. A verbal description for may have occurred would be:

The species was present at the unit in season 1 and detected in both
surveys. Between seasons 1 and 2, the species either went locally

extinct (so it was absent and couldn’t be detected in season 2) then
colonized the unit between seasons 2 and 3 (so it was present at the
unit immediately before the first survey of the third season), OR the
species did not go locally extinct between seasons 1 and 2 (so it was
still present there), and was simply not detected in either survey of
season 2, and did not locally extinct between seasons 2 and 3. In
season 3, the species was not detected in the first survey, but was

detected in the second survey.
Note that with the verbal description, the species is presumed to be present in both seasons
1 and 3 as, from the observed data, the species was detected at least once in those seasons.
The ambiguity is whether the species was actually present or absent in the second season
(when it was never detected) and the verbal description is just working through the different
possibilities for what may have happened in terms of colonization and extinction events for
each of those cases. Translating the verbal description into a probability statement is just a
matter of substituting in the respective parameters for the appropriate phrases (and noting that
the probability of something not happening is 1− the probability of it happening). Therefore,
the probability statement for this observed detection history becomes:

Pr(hi) =ψ1 p1,1 p1,2

× [ε1γ2 +(1− ε1)(1− p2,1)(1− p2,2)(1− ε2)]

× (1− p3,1)p3,2 (4.1)

The term in the square brackets addresses the ambiguity with respect to the presence or ab-
sence of the species at the unit in the second season. As, from the observed data, it is not
possible to discount either of the two possibilities, the respective probabilities are added to-
gether in the probability statement.

After constructing the probability statements for each surveyed unit, these are combined to
form the likelihood equation which is then maximized, as in the single season model, to obtain
the maximum likelihood estimates (MLE’s) for the model parameters. For further discussion
on the development of the model, see MacKenzie et al. (2003) and MacKenzie et al. (2006).

4.2 Reparameterizations
It is important to understand how the occupancy, colonization and extinction probabilities are
associated with one another to gain a full appreciation of what is possible with the multi-season
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framework, and also as this leads to possible reparametrizations of the model that are available
in PRESENCE (but not explained in detail in the current User Manual). By reparameterizing
the model, different types of questions can be addressed with the modeling, depending up on
the questions of interest.

Note that from first year occupancy (ψ1), colonization (γt) and extinction probabilities (εt),
occupancy in future years (ψt+1) can be calculated with the recursive equation:

ψt+1 = ψt(1− εt)+(1−ψt)γt (4.2)

Therefore, given values for ψ1, ε1 and γ1, the value for ψ2 can be calculated; with ψ2, ε2
and γ2, ψ3 can be calculated, and so on. Hence, from the initial formulation of the model,
overall occupancy in the subsequent seasons can be calculated. As future occupancy has not
been estimated directly in the model, it is called a derived parameter, much like the conditional
probability of occupancy was with the single season model. With this recursive equation, if
any 3 of the 4 values values associated with it are supplied, the fourth can always be obtained
with a bit of high-school algebra.

This means the recursive equation could be rearranged with either εt or γt on the left-
hand side such that the parameters on the right-hand side, which are the ones to be directly
estimated, include both ψt and ψt+1. Hence, rather than estimating first-season occupancy,
colonization and extinction probabilities directly, it is possible to estimate seasonal occupancy
directly along with either colonization or extinction probabilities. This could be useful when
covariate effects on seasonal occupancy are of interest, or if there are questions about trends
in occupancy over time.

Another reparmeterization is that rather than talking about local extinction probabilities
(i.e., the probability of the species becoming absent from a unit), persistence probabilities
may be of interest. That is, the probability of the species remaining to be present at a unit
between successive seasons. This could simply be defined as:

φt = 1− εt (4.3)

It should be stressed that colonization and persistence probabilities are occupancy proba-
bilities; they are just occupancy probabilities conditional upon the presence or absence of the
species in the previous season. Cast in this light, one can make valid inferences about factors
affecting occupancy based upon the colonization and persistence probabilities, the population
of interest is just being subsetted into those places that were unoccupied and occupied in the
preceding season.

4.3 Example: Grand Skinks
The grand skink (Oligosoma grande) is an endangered giant skink species endemic to New
Zealand and presently only found in a few locations within the Otago province. It grows to
approximately 300mm in length and gives birth to 2-3 live, fully-formed young each year.
They are omnivorous, diurnal and do not hibernate during the winter. They are mostly found
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in upland grassland areas on large rocky outcrops. The dataset that will be used here was col-
lected by the New Zealand Department of Conservation near the Macreas township in eastern
Otago over a five-year period in the 1990’s.

Figure 4.3: Grand skink, Oligosoma grande. Photo credit: Catherine Roughton, University of
Otago.

During the five years, data was collected from 338 rocky-outcrops. Each outcrop is consid-
ered here as a sampling unit, hence the presence and absence of grand skinks on the outcrops
will be modeled. Each outcrop was surrounded by either a native grassland, tussock, or a
modified habitat where the native grassland had been converted to pasture. The surrounding
habitat type is a site-specific covariate and will be used in the analysis. In this example, we
shall work thorough the steps of getting multi-season data into PRESENCE, then fit a range
of models with and without covariates and examine the output.

4.3.1 Getting the data into PRESENCE
Open the file Grand Skinks.xls, located in the PRESENCE sample data folder. The data is
arranged with one row for each outcrop and 15 columns; there are 5 years of data with up
to 3 surveys of each outcrop per year, although note there are a number of missing values
and some outcrops did not get surveyed at all in some years. The first survey of all outcrops
each year are aligned in the same column, so the 15 columns are in 5 blocks of 3. In this
example, the columns just represent the first, second and third survey of each outcrop and the
surveys do not align chronologically. That is, some outcrops may have already been surveyed
three times during a year before others had been surveyed for the first time. As such, fitting a
model with a survey-specific detection probability would not make biological sense as the first
survey of different outcrops may have occurred at quite different times of the year. If there
was a desire to allow to allow detection to vary within each year that could easily be achieved
by defining suitable sampling-occasion covariates based up survey date, but that is not done
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here. There is also a pair of site-specific covariates called Tussock and Pasture which =1 if the
the surrounding habitat was of that type, and 0 otherwise.

Perform the following steps to enter the data into PRESENCE. If you already have been
using PRESENCE for a previous analysis it is always advisable to start a new instance of
PRESENCE before starting a new, or reopening a, project.

1. Start a new project in PRESENCE and click on Input Data Form to open a blank data
form

2. Go to the spreadsheet, select and copy the detection data

3. Return to the data form and paste in the detection data (Paste>Paste Values)

4. Change the number of site-covariates to 2

5. On the spreadsheet, select and copy the name and values of the two covariates

6. In the data input form, select the Site Covars tab, ensure the top-leftmost cell is selected,
then paste in the covariate names and values (Paste>Paste w/covnames)

7. Change the number of surveys per season (No. Occ/season) from 15 to 3

8. Save the data, clicking on No, do not save the last column as frequency data and provid-
ing a suitable title when prompted

9. Once saved, close the Data Input Form, review the data summary for accuracy (espe-
cial ensure the number of occasions per season is correct), then click OK to complete
the project setup

10. When completed, an empty Results Browser window should be visible

In this example, each season had the same number of surveys, hence the number of occasions
per season could be specified as a single number. When the number of surveys differs, then
the number of occasions should be specified as a list of numbers separated by a comma. For
example, ’3,3,3,2,4’ could be entered if there were a maximum of 3 surveys conducted in the
first three seasons, then 2 and 4 surveys in the fourth and fifth seasons respectively. The list
is just telling PRESENCE how the 15 columns of data should be broken into the different
seasons.

4.3.2 Fitting multi-season models without covariates
To begin a multi-season analysis select Run>Analysis: multi-season (approximately
half-way down the list of models), which will bring up the window in Figure 4.4. Note that
it is a similar format to the single-season analysis, but with a different selection of models
in the model box. There are no predefined models, and all models have to be fit using the
design matrix. In the model box there are four different parameterizations available; only the
first parameterization will be used here. Looking at the design matrix, there are four tabs
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in the design matrix window, one for each of the parameter types; occupancy, colonization,
extinction and detection. Exploring the design matrix window, noting the following points:

• on the occupancy tab there is only one row for the one real occupancy parameter, psi1,
for first-season occupancy

• on the colonization and extinction tabs, there are four real parameters for colonization
and extinction. As these are between season events, and there is 5 years of data, there
are 4 between-year periods. The parameter names have been abbreviated to gam and
eps respectively

• on the detection tab there are 15 real parameters, one for each survey occasion. The real
parameters are named using the convention p[t- j] where t indicates season and j survey
within season

Figure 4.4: Multi-season Setup Numerical Estimation Run window.

The first model to fit is psi1(.),gamma(.),eps(.),p(.), i.e., each of the parameters are con-
stant across time and space. This is the default model when the analysis window is opened,
hence no changes to the design matrices are required. Simply rename the model, then press
Ok to Run. Confirm the model then open the output.

The beginning of the output is very similar to the single-season output, with the main ex-
ception being that there are now two additional design matrices, one for colonization (gamma)
and one for extinction (eps) probabilities. These design matrices are treated in exactly the same
way as before; the single column of 1’s is indicating that these parameters all have the same
value in each year. Focusing on the estimation part of the output, first the beta parameters
are reported which could be used to write out the corresponding logistic regression equations.
This is followed by the real parameter estimates, i.e., the probabilities. As there are no covari-
ates in this particular model, only the value for the first outcrop (site) is reported as the value
is assumed to be the same for all outcrops. From this model we would therefore conclude that;
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1. the probability of occupancy in the first year was 0.39

2. between all seasons, the probability that skinks colonize a previously unoccupied rocky
outcrop is 0.07

3. between all seasons, the probability that skinks go locally extinct from an occupied
rocky outcrop is 0.10

4. given an outcrop is occupied by skinks in a year, the probability of detecting skinks in a
single survey is 0.69

Below the real parameter estimates, some derived estimates are reported. Occupancy es-
timates for years 2-5 are calculated using the recursive equation defined previously. Here,
the occupancy estimates are slightly increasing. Below, the occupancy estimates are some
parameters called lam, short for lambda (λ ). These values are simply the ratio of successive
occupancy estimates and have a similar interpretation to a finite population growth rate, e.g.,

λt =
ψt+1

ψt
(4.4)

Looking at the derived parameter estimates, some may question how can overall occupancy
increase when the local-extinction probability is greater than the colonization probability?
This happens because these dynamic processes only affect occupied and unoccupied units
respectively. As initial occupancy is estimated to be <0.5, there are more unoccupied units
that could be colonized compared to the number of occupied units from where the skinks could
go locally extinct. Further, the overall fraction of units that go locally extinct between years
1 and 2 can be calculated as ψ1ε1 ≈ 0.4, while the overall fraction that get colonized for the
same time period is (1−ψ1)γ1 ≈ 0.42, which is slightly larger, leading to the small increase
in overall occupancy.

Now, fit the model psi1(.),gamma(year),eps(year),p(year), that is, colonization, extinc-
tion and detection probabilities are allowed to be different in each year. After opening the
multi-season analysis window, set up the following design matrices:

1. leave the occupancy design matrix as the default

2. select the colonization tab, then select from the design matrix window menu Init>Full

Identity

3. repeat the above for extinction probability

4. select the detection tab, then select from the design matrix window menu Init>Seasonal

Effects

Screen shots of the four design matrices required are given in Figure 4.5. As with the
single-season models, these design matrices are representing a series of logistic regression
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Figure 4.5: Design matrices for the model psi(.),gamma(year),eps(year),p(year).

equations. For example, for colonization probability:

logit (γi,1) = b1 ·1+b2 ·0+b3 ·0+b4 ·0 = b1 (4.5)
logit (γi,2) = b1 ·0+b2 ·1+b3 ·0+b4 ·0 = b2 (4.6)
logit (γi,3) = b1 ·0+b2 ·0+b3 ·1+b4 ·0 = b3 (4.7)
logit (γi,4) = b1 ·0+b2 ·0+b3 ·0+b4 ·1 = b4 (4.8)

That is, the result of each equation will be a different amount, therefore the probability in
each year is allowed to be different. The design matrix that has been defined for detection
probability allows detection probability to be different between years, but forces it to be the
same within years. Recall that the surveys within years are not aligned in chronological order
so different outcrops may have been surveyed for the first time in a year on quite different
dates, hence a model that allows detection probability at the first, second and third surveys
each year to be different from one another (but the same across all outcrops each survey)
makes little biological sense. Had a model been required where each of the 15 surveys were
to be allowed a different detection probability then that could have been achieved by selecting
Init>Full Identity. Note the Seasonal effects option only becomes enabled when
the detection tab is selected for multi-season models.

Once the design matrices have been set up, provide a model name then run the model.
After confirming the results, open the output and locate the real parameter estimates. These
should indicate that the estimated probability of;

1. occupancy in the first year is 0.38

2. colonization is 0.12, 0.01, 0.07 and 0.10 for each of the between year periods respec-
tively

3. extinction is 0.07, 0.07, 0.14 and 0.17 for each of the between year periods respectively

4. detecting the skinks in a single survey is 0.70, 0.65, 0.69, 0.84 and 0.66 in each of the 5
years respectively
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That the model psi1(.),gamma(year),eps(year),p(year) is ranked above the simpler model
suggests that there is some important annual variation in at least one of those three parameters
that is much better explained by the current model. Which of the parameter types is reasonable
for this result could be identified by fitting further models that include annual variation in some
of those parameters, but not others, then comparing the results. In actual fact, if identification
of which parameters exhibited substantial annual variation and which were relatively constant
across the 5-year period was an intended outcome of the analysis then the best approach would
be to define a set of candidate models representing different combinations of the questions of
interest for each parameter type.

4.3.3 Fitting multi-season models with covariates
Defining the models

Incorporating potential covariates into a multi-season analysis proceeds exactly as for a single-
season analysis. The most important step is to ensure that the relevant variables of interest
have been defined appropriately and included in the PRESENCE data file. For example, if the
question of interest was whether occupancy in the first year was different for those outcrops
surrounded by pasture vs tussock (i.e., the modified vs natural habitat), then the model that
represents the following equation should be fit to the data:

logit (ψi,1) = a1+a2 ·Pasturei (4.9)

where Pasturei is the indicator covariate defined in the data file which = 1 if the outcrop was
surrounded by pasture or = 0 if it was surrounded by tussock. Substituting in these values it
should be apparent that for an outcrop surrounded by pasture Equation 4.9 becomes:

logit (ψi,1) = a1+a2, (4.10)

and for an outcrop surrounded by tussock:

logit (ψi,1) = a1. (4.11)

Therefore, a2 indicates how different (on the logit scale) occupancy is for outcrops surrounded
by pasture compared to tussock; a negative value would mean occupancy is lower while a
positive value would indicate it is higher. Modifying Equation 4.9 slightly highlights the
values that need to be included in the design matrix, i.e.,

logit (ψi,1) = a1 ·1+a2 ·Pasturei (4.12)

so inserting the values that are associated with the regression coefficients (the beta parameters
a1 and a2), the design matrix should appear as in Figure 4.6.

The approach is generalized for the other parameter types that involve more real param-
eters (rows in the design matrices). For example, suppose that a pasture effect was to be
included for the colonization probabilities (i.e., probability of skinks colonizing an outcrop
was different if the outcrop was surrounded by pasture compared to tussock), in addition to
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Figure 4.6: Design matrix for including a pasture effect on first-year occupancy.

annual variation. At this point, it will be assumed that the effect of being surrounded by pas-
ture is the same each year. In this case, the effect of the variables year and pasture are additive
and this component could be notated as gamma(year+pasture). Building on the set of equa-
tions given previously for a year effect on colonization probabilities, the set for this model
would be;

logit (γi,1) = b1+b5 ·Pasturei (4.13)
logit (γi,2) = b2+b5 ·Pasturei (4.14)
logit (γi,3) = b3+b5 ·Pasturei (4.15)
logit (γi,4) = b4+b5 ·Pasturei (4.16)

so b1 - b4 allow the annual variation, and b5 is the effect pasture has on colonization each
year. Expanding this set of equations out to identify the design matrix gives;

logit (γi,1) = b1 ·1+b2 ·0+b3 ·0+b4 ·0+b5 ·Pasturei (4.17)
logit (γi,2) = b1 ·0+b2 ·1+b3 ·0+b4 ·0+b5 ·Pasturei (4.18)
logit (γi,3) = b1 ·0+b2 ·0+b3 ·1+b4 ·0+b5 ·Pasturei (4.19)
logit (γi,4) = b1 ·0+b2 ·0+b3 ·0+b4 ·1+b5 ·Pasturei (4.20)

Note that each equation contains all beta parameters, although many are multiplied by 0 to
indicate if they are not required for that particular equation. This may seem long-winded, but
ultimately provides a great deal of flexibility for the types of models that can be fit to the data.
The design matrix for the colonization component of this multi-season model is in Figure 4.7.

What if the effect of the variable of interest was thought to be different each year, e.g.,
sometimes, under certain environmental conditions, skinks on the outcrops surrounded by
pasture did better than those surrounded by tussock, but in other years that pattern was reversed
(or at least the magnitude of any effect was different)? The effect of the variables year and
pasture would now be called multiplicative, and there is an interaction between these two
variables. To fit a model with such an interaction between year and pasture on extinction
probabilities, a design matrix is needed that represents the following equations;

logit (εi,1) = c1+ c5 ·Pasturei (4.21)
logit (εi,2) = c2+ c6 ·Pasturei (4.22)
logit (εi,3) = c3+ c7 ·Pasturei (4.23)
logit (εi,4) = c4+ c8 ·Pasturei (4.24)
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Figure 4.7: Design matrix for including a consistent pasture effect on colonization probability
with additive annual variation.

Here, c1-c4 provides for an overall year effect and c5-c8 indicates how different extinction
probabilities are between outcrops surrounded pasture vs tussock each between year period.
After expanding the equations out, the required design matrix in given in Figure 4.8.

Figure 4.8: Design matrix for including an interaction between year and pasture on extinction
probability.

Notating the extinction component of the model, it could be called eps(Year*Pasture)
with the ’*’ indicating the multiplicative effect (as opposed to the ’+’ used when the variables
were additive).

While covariates can also be added for detection (either site-specific or sampling-occasion
covariates), none shall be used here. However the mechanics of doing so is the same as that
used above, and also for the single-season models where covariates were applied to detec-
tion probabilities. Here, use a year effect of detection as was done for the previous model
fit to the data. Given the structure specified for each component, this model could be called
psi1(Pasture),gamma(Year+Pasture),eps(Year*Pasture),p(Year). Rename the model ac-
cordingly then hit Ok to Run.
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Table 4.1: Beta parameter estimates, standard errors (SE) and odds ratios (OR) for the effect
of pasture on extinction probabilities

Beta Parameter Estimate SE OR
c5 1.62 0.96 5.05
c6 -1.25 1.39 0.29
c7 1.40 0.69 4.04
c8 0.56 0.74 1.75

Interpretation of the results

From this model, â2 = −1.12 (SE = 0.029) suggesting that skink occupancy in the first year
was lower for outcrops surrounded by pasture compared to pasture. The respective occupancy
probabilities are also given in the output, although as noted previously, interpreting the effects
in terms of an odds ratio can be useful, particularly for more complicated models. Therefore,
the estimated odds ratio for the effect of pasture on occupancy would be:

ÔRPasture = e−1.12

= 0.33

This implies that for every unoccupied outcrop in the first year, the number of occupied out-
crops surrounded by pasture will be approximately one-third of the number of occupied out-
crops surrounded by tussock.

For colonization, the estimated effect of pasture is b̂4 =−0.87 (SE = 0.37) indicating that
colonization probabilities are lower for those outcrops surrounded by pasture. Interpreting this
in terms of an odds ratio, it could be concluded that for every unoccupied outcrop that does
not become colonized, the number of outcrops surrounded by pasture that become colonized
is 0.42 (= e−0.87) times the number of outcrops surrounded by tussock that become colonized.
Note that this effect is assumed to be consistent across all years so is unaffected by what the
overall level of colonization might be in any particular time period.

The effect of pasture on extinction probabilities was allowed to be different over time in
this model, and the beta parameter estimates are given in Table 4.1. Note that the estimated
effect of pasture is variable, and the size of the standard error is relatively large compared
to the estimated effect size in some years suggesting the effect may not be estimated very
precisely. Taken at face value, however, the results would suggest outcrops surrounded by
pasture have a higher probability of skinks going locally extinct than outcrops surrounded by
tussock in most years, although there was one year where extinction probability may have
been lower when the outcrop was surrounded by pasture.

4.3.4 Other points for consideration
There are a number of short points to be made before leaving this example.
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Alternative design matrices

The first is that often it will be possible to define the same biological model with different
design matrices. Estimated probabilities, AIC and log-likelihood values should come out to be
the same values, but what will be different will be the estimated beta parameters and they will
have different interpretations. The other values should be the same in theory, but in practice
different results can be obtained as the algorithms used by PRESENCE (and other software)
to maximize the likelihood and obtain the MLE’s are not perfect and they can converge to
an incorrect result depending on the particularly design matrices that have been defined and
the set of data being used. The ’true’ maximum will hold for the different constructions of
the model, the algorithms may just sometimes need a bit of assistance in finding that ’true’
maximum as they are getting stuck on another local maximum. The other option, of course, is
the design matrices have not been set up correctly and that the user is actually attempting to
fit models with different biological interpretations.

As an example of using a different design matrix, consider again the extinction component
of the previous model with an interaction between the variables year and pasture. The design
matrix could have been defined as in Figure 4.9.

Figure 4.9: Design matrix for including an interaction between year and pasture on extinction
probability.

Rather than having 1’s and the pasture variable name on just the diagonal, there is now
a column of 1’s in the first column and a column of ’Pasture’ in the fifth column. Most
importantly is that this alternative construction of the model has the exact same biological
mechanism; the effect of pasture on extinction probability is allowed to vary in each year.
What is different is the interpretation of the beta parameters or regression coefficients. This
design matrix represents the series of equations:

logit (εi,1) = c1+ c5 ·Pasturei (4.25)
logit (εi,2) = c1+ c2+ c5 ·Pasturei + c6 ·Pasturei (4.26)
logit (εi,3) = c1+ c3+ c5 ·Pasturei + c7 ·Pasturei (4.27)
logit (εi,4) = c1+ c4+ c5 ·Pasturei + c8 ·Pasturei (4.28)
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which could be rewritten as:

logit (εi,1) = c1+ c5 ·Pasturei (4.29)
logit (εi,2) = (c1+ c2)+(c5+ c6) ·Pasturei (4.30)
logit (εi,3) = (c1+ c3)+(c5+ c7) ·Pasturei (4.31)
logit (εi,4) = (c1+ c4)+(c5+ c8) ·Pasturei (4.32)

Compare this to the form of equations used previously, keeping in mind that some of the
beta parameters have different interpretations so are not directly comparable (to help reduce
confusion, the previous beta parameters will be denoted with an accent, e.g., ć2). The first
equation is exactly the same in each, so ć1 and c1, ć5 and c5 have the same interpretation both
times. However, ć2 is now replaced by the term c1+c2 and , theoretically, once estimated the
two terms should have the same value, logit-extinction probability for outcrops surrounded
by tussock between years 2 and 3. What is different is that by including the column of 1’s
the first extinction probability is now being treated as a benchmark against which the other
extinction are compared. That is, while ć2 was the absolute value of the logit-extinction
probability, c2 indicates how different the second extinction probability was compared to the
first. Similarly, c3 and c4 indicate how different the third and fourth extinction probabilities
were compared to the first. The same change in interpretation occurs with respect to the
regression coefficients for the pasture variable. In both cases ć5 and c5 is the effect pasture
has on the first extinction probability, however while ć6 is the absolute effect pasture has on
the second extinction probability, c6 is how different the effect of pasture is on the second
extinction probability compared to the first, and similarly for c7 and c8.

In some cases, there may be a natural choice in terms of which type of design matrix to
use. For example, if a prime question is how different one parameter is compared to another,
then using a parameterization similar to the latter one may be preferable. It should also be
noted that the column of 1’s, or the variable name, does not have to go in the first position and
they could have been placed elsewhere which simply would have changed which extinction
probability is being treated as the ’standard’ against which the other probabilities are being
compared. For example, had the column of 1’s been placed in the third column (and 1’s on
the diagonal otherwise) then c1, c2 and c4 would indicate how different extinction was in the
respective period compared to the third probability.

Defining the model set

The second point for consideration is that with these multi-state models, the number of poten-
tial models you could fit to the data grows exponentially with the number of variables available
for each parameter type. Without much effort, the number of possible models can quickly be-
comes thousands even with only 3 or 4 factors of interest for each parameter type. The key
is to have a good, pragmatic strategy for dealing with such a large set of models. There may
often be multiple options for doing so, and one suggestion is to focus on only one parameter
type at a time. While doing so, however, it is also suggested that a relatively general model
(as opposed to the very simple model, e.g., a constant model) be maintained for the other pa-
rameter types to provide them with some flexibility should there actually be some variation in
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those other parameters. If there is some variation in those other parameter types, and a very
simple model is enforced upon them, then that variation may manifest itself into the parameter
currently being focus on leading to misleading inferences.

Maps

Another point is that based upon the PRESENCE output from a multi-season model, it is
possible to create maps of occupancy, colonization and extinction probabilities in much the
same way as was demonstrated in the final single-season model example. Such maps could be
used to illustrate areas of special interest. Maps could also be produced based upon reparam-
eterizations or derived parameters, dependent upon what type of information is ultimately of
interest.

Prediction

Finally, a natural application of the multi-season occupancy model is to predict the occurrence
or distribution of the species into the future. Once parameter values have been estimated from
real data (or failing that, parameter values have been assumed), the general framework of the
multi-season model could be used to predict what level of occupancy would be expected 5, 10
or 50 years into the future. Depending upon the available information, these predictions could
be in the form of simple numerical summaries (e.g., by using the previously defined recursive
equation), or visual summaries (e.g., maps).



Chapter 5

Closing thoughts

Hopefully, this User Manual has been a useful introduction to how to use PRESENCE. I
am aware that many topics have been left untouched and, over time, some of those blanks
will be filled in. However, as noted at the beginning of this manual, the intent of this User
Manual is to be a beginners ’How to’ reference and to be complementary to other sources of
information that is already available for PRESENCE and occupancy modeling in general. It is
highly unlikely that this manual will ever evolve into a font of all knowledge about occupancy
modeling; the topic is simply too broad and scope of possible applications is even broader.
Further reading will always be required.
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